-Reviews-

電子線結晶学によって明かされた胃 H+,K+-ATPase のラチェット機構

阿部一啓,*谷 一寿,西澤知宏,藤吉好則

A Novel Ratchet Mechanism of Gastric H⁺,K⁺-ATPase Revealed by Electron Crystallography of Two-dimensional Crystals

Kazuhiro ABE,^{*} Kazutoshi TANI, Tomohiro NISHIZAWA, and Yoshinori FUJIYOSHI Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606–0852, Japan

(Received September 1, 2009)

Acid secretion by the stomach results in a pH of about 1. This highly acidic environment is essential for digestion and also acts as a first barrier against bacterial and viral infections. Conversely, too much acid secretion causes gastric ulcer. The mechanism by which this massive proton gradient is generated is of considerable biomedical interest. In this review, we introduce the first molecular model for this remarkable biological phenomenon. The structure of H⁺,K⁺-AT-Pase at 6.5 Å resolution was determined by electron crystallography of two-dimensional crystals. The structure shows the catalytic α -subunit and the non-catalytic β -subunit in a pseudo-E₂P conformation. Different from Na⁺,K⁺-ATPase, the N-terminal tail of the β -subunit is in direct contact with the phosphorylation domain of the α -subunit. This interaction may hold the phosphorylation domain in place, thus stabilizing the enzyme conformation and preventing the reverse reaction of the transport cycle. Indeed, truncation of the β -subunit functions as a "ratchet", preventing inefficient transport and reverse-flow of protons. We can thus provide a mechanistic explanation for how the H⁺,K⁺-ATPase can generate a million-fold proton gradient across the gastric parietal cell membrane, the highest cation gradient known in any mammalian tissue.

Key words—gastric proton pump; H⁺,K⁺-ATPase; cryo-electron microscopy; two-dimensional crystal; membrane protein structure; P-type ATPase

1. はじめに

ヒトの食物消化時の胃内腔の pH は約1にもな る. この強酸性の環境は、消化にとって必要不可欠 であるとともに、外部からのバクテリアやウイルス の侵入に対する最初のバリアとしても重要である. 逆に、胃酸過多は消化性潰瘍の原因でもある. H⁺, K⁺-ATPase (プロトンポンプ)は、この強酸性環 境を作り出している実体である.^{1,2)}この膜タンパク 質は ATP の化学エネルギーを利用した H⁺ (細胞 内から外へ)と K⁺ (細胞外から内へ)の能動輸送 を行う (Fig. 1). ATP の加水分解は、ファミリー 間で普遍的に保存されたアスパラギン酸残基への自

京都大学大学院理学研究科生物物理学教室(〒606-0852 京都市左京区北白川追分町) *e-mail: ikkei@em.biophys.kyoto-u.ac.jp 本総説は、日本薬学会第 129 年会シンポジウム S27 で 発表したものを中心に記述したものである。 己リン酸化を介して行われる. これはリン酸化中間
体 (Phosphoenzyme intermediate, EP) と呼ばれ,
P-type ATPase ファミリーという呼称の由来となっている.

H⁺,K⁺-ATPase は 2 種類のサブユニットから構 成される. 触媒機能を担う α 鎖(MW 110 kDa)は, 近縁の P-type ATPase 例えば Na⁺,K⁺-ATPase や Ca²⁺-ATPase (SERCA) と高い相同性を持ち, ATP 結合部位,リン酸化部位,イオン結合部位等 を備え,触媒機能を直接担うサブユニットである. SERCA などは基本的に触媒サブユニットのみで機 能するが,H⁺,K⁺-ATPase と Na⁺,K⁺-ATPase は β 鎖(MW 35 kDa)を必要とする.このサブユニッ トは一回膜貫通型で N 末端約 32 残基を細胞質側 に,複数の N 型糖鎖付加サイトと 3 つの分子内ジ スルフィド結合を細胞外に持ち,複合体の安定な発 現や膜輸送に係わるとされている.³⁾

Fig. 1. Reaction Scheme of the Transport Cycle by H^+, K^+ -ATPase

Cation transport and ATP hydrolysis are coupled to the cyclic conversion of the enzyme (abbreviated as "E") between two conformations, E_1 and E_2 , and their phosphorylated intermediates (E_1P , E_2P). The equilibrium between E_1P and E_2P states of the H⁺,K⁺-ATPase is largely shifted towards the E_2P state (E_2P -preference).

H⁺,K⁺-ATPase の行うイオン輸送と ATP 加水分 解反応機構は、古くからの酵素化学的研究によって 非常によく理解されている (Fig. 1).4,5) この酵素に よるイオン輸送は、大きな構造変化を伴った、主と して2種類のコンフォメーション(E₁, E₂)をサイ クルすることで行われる. イオン結合サイトを細胞 内へ向けた E1 と、細胞外に開いた E2 は、それぞれ H⁺ と K⁺ に対して高親和性を示す.細胞内の H⁺ に対して高い親和性を示す E1 状態の酵素が ATP を結合し、Mg²⁺存在下でATP が加水分解され、 リン酸化された E₁P 中間体を形成する. この中間 体は ADP に対して感受性,つまり逆反応によって ATP を合成する能力を持った、いわば高エネル ギー中間体である. これが E₂P へと変換される過 程で H⁺ が細胞外へ排出される. E₂P 状態ではイオ ン結合サイトが細胞外に面しており,K⁺の結合に よって脱リン酸化され, K+を閉塞した KE2 状態に なる. 低親和性の ATP の結合によって K⁺ の細胞 内への輸送が促進され、反応サイクルが進行する. 1分子の ATP が加水分解されることで、それぞれ 2 分子の H⁺ と K⁺ が対抗輸送される. 反応サイク ルの各素反応は基本的に可逆的な化学平衡であるが. H^+, K^+ -ATPase において特徴的なのは、 E_1P/E_2P の平衡反応が大きく E₂P 側に偏っていて,逆反応 による E₁P の形成がほとんど起こらないことであ る.^{6,7)} E₁P から E₂P への異性化は H⁺ が胃内腔へと 輸送される重要な過程であることからも、このよう Vol. 130 (2010)

な E_2P を好む性質 (Fig. 1, E_2P -preference) は,生 理的に好ましくない H^+ の逆流を防ぐために,この アイソフォームがなにか特殊な機構を備えているこ とを想像させる.

細胞内と胃内部は pH 差にして 6 であるから,細胞膜を隔てて 100 万倍(×10⁶) もの H⁺ 濃度勾配 が形成されていることになる. H⁺,K⁺-ATPase は 一体どのような仕組みを使って,このように大きな イオン濃度勾配を作り出すことができるのであろう か? この問題に対して,われわれは極低温電子顕 微鏡を用いた構造解析というアプローチで臨んだ. 変異体を用いた酵素化学的な機能解析の結果と併せ て,われわれは胃酸分泌という顕著な生命現象をあ る程度説明するモデルを提示する.⁸⁾

2. 二次元結晶の電子線結晶学による構造解析

電子顕微鏡による膜タンパク質の結晶構造解析. すなわち電子線結晶学⁹は、X線結晶構造解析に必 要とされる三次元結晶ではなく、結晶格子が文字通 り二次元の平面状に広がった二次元結晶を用いる. 方法論の詳しい解説は参考文献10,11)に譲るが、良質 な二次元結晶さえあれば、液体ヘリウム温度(4K) まで試料を冷却し電子線によるダメージを低減する ことによって、10)システムとしては十分に原子分解 能を達成できるレベルにある.12)また電子顕微鏡で 撮影された実像が得られるために、今回のように比 較的分解能の低い結晶であっても構造が得られると いう利点がある、二次元結晶は一般に、透析等によ る界面活性剤の除去を結晶形成の駆動力として膜タ ンパク質が脂質二分子膜に再構成された状態で形成 される. このため界面活性剤に対して比較的不安定 な分子であっても結晶形成が可能であること、また 何よりも膜タンパク質にとって極めて自然な状態に 近いということが特徴と言えるであろう.

豚の胃より精製,界面活性剤で可溶化した H⁺, K⁺-ATPase標品を用いて,二次元結晶を作成する ことに成功した.酢酸ウランによる負染色像を見る 限りでは一層のシート状に見えるが,構造解析の結 果一枚のシートは二層の脂質二分子膜から形成され ており,H⁺,K⁺-ATPaseを含むそれぞれの脂質膜 が分子の細胞質部分を介して上下に接触した *p22*₁2₁ symmetryを持つ二次元結晶であることがわかっ た.この二層から構成される結晶は,厚さ(*c*軸方 向の長さ)が約 320 Å 程度あり,結晶中での分子 間相互作用がすべて可溶性ドメインに存在すること から、氷包埋時に起こる試料の乾燥によって容易に 破壊される.そのため試料調製はすべてカーボンサ ンド法¹³⁾を用いて行った.この試料調製法は元来, 傾斜像撮影時にしばしば起こる、不均一な荷電によ るビームシフトを軽減するために開発されたが、結 晶が乾燥から保護されることによって分解能の向上 にもつながった.また同法の効果により、70°傾斜 像を含む立体構造を構築することに成功した.

3. H⁺, K⁺-ATPase の 6.5 Å 分解能での立体構造

6.5 Å 分解能で得られた H⁺,K⁺-ATPase の立体構 造 (Electron Microscopy Data Bank code 5104) は SERCA¹⁴⁾ や,特に相同性の高い Na⁺,K⁺-ATPase¹⁵⁾ と非常によく似たものであった [Fig. 2(A)]. 細胞 質 側には N (Nucleotide-binding) ドメイン, P (Phosphorylation) ドメイン, A (Actuator) ドメ インが十分な解像度で見えている. また α 鎖の 10 本の TM (Trans-Membrane) ヘリックス (M1– M10) や β 鎖の TM ヘリックス (β TM) は, Na⁺, K⁺-ATPase の原子モデルを鋳型として作成したホ モロジーモデル (Protein Data Bank code 3IXZ) に よって矛盾なく説明できる. TM と垂直な方向に突 き出した構造 [Fig. 2(A), arrowheads] は, タン パク質周辺に結合した脂質二分子膜表面の構造であ ると考えられる.

二次元結晶化はリン酸のアナログであるフッ化ア ルミニウム (AIF) と ADP 共存下で行われた.こ の基質の組み合わせは SERCA での E₁P-ADP 中間 体の構造解析に用いられており、16 当初われわれも この中間体が形成されると考えていた.しかし.細 胞質部分の各ドメインの位置関係 [Fig. 2(B)] か ら、この構造は E₂P 状態であることがわかった. P ドメインの普遍的に保存されたアスパラギン酸残基 の位置にみられる非常に強い密度 [Fig. 2(B), red sphere, contoured at 5.5σ) は、リン酸アナログと して結合した AIF によるものと考えられる.Nド メインには ADP と思われる密度が観察された [Fig. 2(B), blue stick model]. AIF と ADP は十分に離れ た位置にあり、またAドメインに存在する高度に保 存された TGES モチーフ [Fig. 2(B), green spheres] によって、AIF は外部からアクセスできないように 遮蔽されている. このような構造上の特徴は、H+, K^+ -ATPase が E_2P 状態にあることを示している.

また,トリプシンによる限定分解によって,結晶中 での分子のコンフォメーションが E₂P であること は,別途確認した.^{8,17)}

膜貫通領域には、細胞外に向けて大きく開口した 構造がみられた [Fig. 2(C), indicated by arrow]. この構造は主として M4, M5, M8 と M5-6 間の細 胞外ループによって取り囲まれている. 図中に示し たいくつかの残基は阻害剤 (SCH28080)の結合に 重要であり, ^{18,19)}特に Cys813 は胃酸抑制剤として 用いられる omeprazole が共有結合する残基として 同定されている [Fig. 2(C), red spheres].¹⁸⁾ これらの阻害剤は K⁺ [Fig. 2(C), red spheres] と 競争的に働くことからも、このキャビティーは阻害 剤の結合サイトであると同時に、K⁺の入り口に当 たることが考えられる.

β鎖の TM ヘリックス (βTM) は M7 と M10 に 隣接している [Fig. 2(A), blue surface, Fig. 2(C) black tube]. また細胞外ドメイン [Figs. 2(A) and (C), blue surface]は M7-M8 間の細胞外ループと 一体化した密度を与えた. この部分には αβ 鎖間の 結合に必須であるとされる SYGQ モチーフが存在 し [Fig. 2(C)], β鎖の細胞外ドメインと強固に結 合していると思われる.細胞外ドメインの一次配列 は Na⁺,K⁺-ATPase と比較して 30% 程度の相同性 しかないにもかかわらず、構造的にはよく似てい る.¹⁵⁾ H⁺,K⁺-ATPase は胃という過酷な環境にさら されながらも、細胞外からのタンパク質分解酵素や 強酸性環境に対する抵抗性を示すことから、 高度に 糖鎖付加された細胞外ドメインがα鎖の細胞外 ループを覆うような構造が重要であるのかもしれな 11.

このように H⁺, K⁺, ATPase の全体構造は, SERCA (触媒サブユニットのみ) や特に相同性の 高い (~70%) Na⁺, K⁺-ATPase と非常によく似た 構造をしていた. しかしながら, このアイソフォー ムに特徴的な構造が細胞質側に存在する. β 鎖 N 末端部分 (β N, 約 32 残基) は, β TM から伸びた 一本の棒状の構造として見い出され, その末端付近 で P ドメインと結合していた [Figs. 3 (A) and (C), arrowhead]. SERCA の E₁P-ADP と E₂P 状態の構 造を比較すると, 細胞内ドメインの配置が, それぞ れの中間体の性質を決定づけるカギになっているこ とがわかる.²⁰⁾ われわれの H⁺, K⁺-ATPase の構造

Fig. 2. Cryo-EM Structure of Gastric H⁺,K⁺-ATPase at 6.5 Å Resolution

A) Surface representation of the H⁺, K⁺-ATPase $\alpha\beta$ -protomer (EM data bank code 5104, showing cytoplasmic side-up) with the fit homology model in tube model (PDB code 31XZ). Color code of the density map: N domain, yellow; P domain, red; A domain, green; TM domain of the α -subunit, wheat; β -subunit, blue. B) Relative orientation of the cytoplasmic domains. A spherical density contoured at the 5.5 σ level (red) shows the position of bound AIF complex to the invariant Asp385, which is covered by highly conserved ²²⁸TGES motif (green spheres). The ADP molecule (stick representation) was fitted into the extra density found at the surface of the N domain. In this figure, the enzyme is shown from a viewpoint on the cytoplasmic side. C) A close-up view of the TM domain (from the opposite side of panel A) shows a large cavity structure (indicated by arrow) with surrounding several of amino acids important for inhibitor binding (highlighted as magenta spheres) found in the luminal side. The TM helices of the homology model of the α -subunit [color changes gradually from M1 (blue) to M10 (red)] and the β subunit (black) are shown as tube model. The red spheres indicate the positions that correspond to bound Rb⁺ in the Na⁺, K⁺-ATPase structure, ⁽⁵⁾ showing approximate locations of the cation binding sites in the H⁺, K⁺-ATPase. The conserved SYGQ sequence, which is critical for the assembly of the $\alpha\beta$ -protomer, is shown as yellow spheres.

Fig. 3. The N-terminal Tail of the β -subunit Functions as a Ratchet

A) Interaction between the α - and β -subunit. The single and double arrowheads indicate the position where the N-terminal tail of the β -subunit contacts the P domain and M3, respectively. B) ADP or K⁺ sensitivity of the EP formed by β N deletion mutants. To measure dephosphorylation, the E³²P formed with $[\gamma^{-32}P]$ ATP was chased with an excess of cold ATP to terminate phosphorylation, without (ligand free, blue) or with 1 mM ADP (+ADP, red) or 10 mM K⁺ (+K⁺, green), followed by acid quenching. For each mutant, the phosphorylation level of the 'ligand free' condition was assigned to 100%. C) Comparison of the H⁺,K⁺-ATPase in the E₂P state (surface) with SERCA in the E₁P-ADP state (tube model, the A and TM domains are not shown for clarity). Arrowhead indicates interaction between β N and the P domain.

では、 β N が P ドメインを E₂P 形成に適した位置に つなぎ止めることで、逆反応による E₁P の形成を 抑えているようにみえた。そこでわれわれは、この サブユニット間相互作用こそが H⁺,K⁺-ATPase に 特徴的な E₂P-preference を説明する構造であり、 β N を欠損した場合、逆反応によって E₁P が形成さ れ得るのではないか、という仮説を立てた。

4. N 末端欠損変異体による逆反応の進行

上記の仮説を裏付けるために、いくつかのN末 端欠損 β 鎖(Δ 4, Δ 8, Δ 13)を α 鎖とHEK-293 細 胞に共発現させた.得られた細胞膜画分には野生型 (WT)と同程度の比活性を示すH⁺,K⁺-ATPase が 発現していた.放射性 [γ -³²P]-ATPを用いた E³²P のパルスーチェイス実験では、これらの変異体が

WTのH⁺,K⁺-ATPaseと比べて異なるE₁P/E₂P分 布を示した [Fig. 3(B)]. E₁P と E₂P では、基質に 対する感受性が大きく異なる (Fig. 1). E₁P は、 H+を閉塞した状態(細胞外へ排出する前)であり, ADP に対して感受性がある. つまり ADP の添加 によって E₁P は脱リン酸化される. この逆反応に よって ATP が合成されるため、E₁P はいわば高エ ネルギーの中間体であると言える.対照的に E₂P は ADP に対して不感受性であり、イオン結合部位 への K⁺の結合によって脱リン酸化反応が促進され る. であるから、ADP に対する E³²P の感受性を見 積もることで、系に存在する E₁P の分布を知るこ とができる. 放射性 ATP によってラベルされた E³²P を形成後、非放射性の ATP を ADP や K⁺ と ともに添加し、残存する E³²P 量を定量した.N末 端のアミノ酸を8残基以上欠損した変異体(△8, △13)は ADP の添加によって顕著に EP 量が減少 した [Fig. 3(B)]. これに対し WT と⊿4 は、H⁺、 K⁺-ATPase において E₁P がほとんど検出されない という過去の報告の通り, 6,7) ほとんど ADP 感受性 を示さなかった. これらの実験結果は、βNの構造 を欠失した H⁺,K⁺-ATPase はその E₂P-preference を失って E₁P 中間体を形成できるようになり、通 常抑えられている逆反応 ($E_2P \rightarrow E_1P + ADP \rightarrow E_1$) +ATP)が進行したことを示している.一方です べての変異体が K+ に対して感受性を示した. これ は、H⁺,K⁺-ATPase が E₁P/E₂P 平衡の定常状態に あるためだと考えられる. つまり, すべての E₁P は速やかに E₂P に移行するために、K+ によって次 々と脱リン酸化を受けるということである. この結 果はまた, βN の欠損が E₂P を不安定化すること で、正反応の速度 ($E_1P \rightarrow E_2P$) には影響を与えず、 逆反応 $(E_2P \rightarrow E_1P)$ にのみ影響を与えていること を示唆する.

5. H⁺,K⁺-ATPase のラチェット機構

以上の構造と機能に関する実験結果は、これまで 積極的に酵素反応に関与しないと考えられていた β 鎖が、触媒機能を担う α 鎖に作用することで酵素 活性を制御することを示している.つまり β N は P ドメインを E₂P 形成に有利な位置につなぎ留める ことで、E₂P から E₁P への逆反応を防ぐ、いわば "ラチェット"として機能していると言える. Figure 3 (C) は H⁺,K⁺-ATPase の E₂P 状態の構造

(surface) を、SERCA E₁P-ADP 状態の原子モデル (tube model, PDB code, 2ZBD) と比較したもので あるが、E₁P/E₂P 状態の遷移において、P ドメイン が大きく動いていることがわかる. Pドメインに存 在するリン酸化部位は、E₂P 状態では N ドメイン から大きく離れて A ドメインによって覆い隠され ている. ところが ADP 感受性を示す E₁P 状態にお いては、図中左方向に傾くことで βN から離れて、 リン酸化部位がNドメインに結合しているADP の末端リン酸に対して露出していることがわかる [Fig. 3(C), arrow]. 今回 E₂P 構造で見い出された βNとPドメインの相互作用は、上記のようなPド メインの動きを相殺して, H⁺,K⁺-ATPase が E₁P を再形成できないようにしていると考えられる.し たがってこの構造を欠損させた場合、Pドメインが 自由に動けるようになり、ADP とリン酸から ATP を合成するという逆反応の進行が可能になったと考 えられる.

H⁺,K⁺-ATPase β N 欠損変異体の性質は、Dürr らによってさらに詳細に検討された.²¹⁾ Xenopus oocyte に α 鎖と共発現させた β N 欠損変異体の機能 解析から得られた結果は、 β N 欠損変異体における E_1P/E_2P 平衡状態が野生型と比較して顕著に E_1P 側に遷移することを示し、*in vivo* においてもわれ われのモデルを裏付けるものとなった.また、興味 深いことに、Na⁺,K⁺-ATPase を用いて行った β N 欠損変異体の解析結果は、野生型と有意な差を示さ なかったことから、 β N のラチェットとしての機能 は H⁺,K⁺-ATPase 特異的であることが示された.

Pドメインのほかに、 β NはM3へリックスとも 接触している. AドメインとM3をつなぐリンカー の長さがSERCAのE₁P/E₂P平衡に影響を与える という報告もあり,²²⁾ β NがPドメインとM3へリ ックスの両方と相互作用してE₂Pの安定性を調節 している可能性は否定できない. β Nは約32アミ ノ酸で構成されているが、今回の構造で観察された β Nの密度は、一本のα-ヘリックスであると仮定し た場合、約19アミノ酸分の長さしかなく、恐らく 最末端部分では単純なα-ヘリックスではなく、複 雑に折りたたまれた構造をしていると考えられる. 興味深いことに、Dürrらによる*Xenopus* oocyteで の実験では、N末端13残基の欠損でみられた顕著 なE₁Pへの平衡遷移が、29残基の欠損で弱まると いう結果を示した.²¹⁾ A ドメインに存在する高度に 保存された TGES モチーフは, E₂P 状態でのリン 酸基を外部から遮蔽し,また引き続き起こる脱リン 酸化反応において重要な役割を果たす.したがって, *β*N の構造ほとんどすべてが欠損した場合, P ドメ インと M3 が同時に自由になり, P ドメインのリン 酸基が A ドメインによって遮蔽された E₂P 構造を 形成し易くなることは可能であろう. 6.5 Å 分解能 の立体構造はしかしながら,それぞれのアミノ酸を 分離するには不十分であり,今後の分解能向上と点 変異導入などによる機能解析が,この部分で行われ ているサブユニット間相互作用の更なる理解につな がるであろう.

6. おわりに

以上の構造と機能的な解析結果から,われわれは なぜ H⁺,K⁺-ATPase が胃内腔と細胞内との間に 100 万倍ものプロトン濃度勾配を形成できるのかを 説明するラチェットモデルを提唱する. 胃壁細胞膜 を隔てた大きなプロトン濃度勾配は,イオン輸送サ イクルを逆行させる強い圧力となる. この逆反応 は,効率的なイオン輸送の妨げになるだけではな く,プロトンの逆流を伴う. それゆえ H⁺,K⁺-ATPase はその分子内に"ラチェット"を備えてお り,生理的に好ましくない逆反応を抑え,イオン輸 送サイクルが順方向にのみ進行するように制御され ているものと考えられる.

謝辞 本研究の遂行にあたり,電子顕微鏡に関 して技術的な助力を頂きました小林一美氏(JEOL DATUM), H⁺,K⁺-ATPaseのcDNAを譲渡して頂 きました今川敏明博士に感謝致します.N末端欠 損変異体のXenopus oocyteでの機能解析に関する 共同研究を遂行して頂いたKatharina Dürr博士, Thomas Friedrich博士に感謝します.本研究開始 時から通して有用な助言を頂きました谷口和弥博士 に感謝致します.

REFERENCES

- Ganser A. L., Forte J. G., *Biochim. Biophys.* Acta, 307, 169–180 (1973).
- Sachs G., Shin J. M., Vagin O., Lambrecht N., Yakubov I., Munson K., J. Clin. Gastroenterol., 41, S226–S242 (2007).
- 3) Chow D. C., Forte J. G., J. Exp. Biol., 198,

1-17 (1995).

- 4) Post R. L., Kume S., Tobin T., Orcutt B., Sen A. K., J. Gen. Physiol., 248, 6993–7000 (1973).
- 5) Rabon E. C., Reuben M. A., Annu. Rev. *Physiol.*, **52**, 321–344 (1990).
- 6) Helmich-de Jong M. L., van Emst-de Vries S. E., De Pont J. J., Schuurmans Stekhoven F. M., Bonting S. L., Biochim. *Biophys. Acta*, 821, 377–383 (1985).
- Rabon E., Sachs G., Mardh S., Wallmark B., Biochim. Biophys. Acta, 688, 515-524 (1982).
- Abe K., Tani K., Nishizawa T., Fujiyoshi Y., EMBO J., 28, 1637–1643 (2009).
- Henderson R., Baldwin J., Downing K., Lepault J., Zemiln F., Ultramicroscopy, 19, 147-178 (1986).
- Fujiyoshi Y., Mizusaki T., Morikawa K., Yamagishi H., Aoki Y., Kihara H., Harada Y., Ultramicroscopy, 38, 241-251 (1991).
- 11) Fujiyoshi Y., Kimura Y., *Tanpakushitsu Kakusan Koso*, **39**, 1289–1297 (1994).
- Tani K., Mitsuma T., Hiroaki Y., Kamegawa A., Nishikawa K., Tanimura Y., Fujiyoshi Y., J. Mol. Biol., 389, 694–706 (2009).
- Gyobu N., Tani K., Hiroaki Y., Kamegawa A., Mitsuoka K., Fujiyoshi Y., J. Struct. Biol., 146, 325–333 (2004).
- 14) Toyoshima C., Nakasako M., Nomura H., Ogawa H., *Nature*, 405, 647–655 (2000).
- Morth J. P., Poulsen H., Toustrup-Jensen M. S., Schack V. R., Egebjerg J., Andersen J. P., Vilsen B., Nissen P., *Nature*, 450, 1043–1049 (2007).
- 16) Toyoshima C., Nomura H., Tsuda T., *Nature*,
 432, 361–368 (2004).
- 17) Nishizawa T., Abe K., Tani K., Fujiyoshi Y.,
 J. Struct. Biol., 162, 219–228 (2008).
- 18) Vagin O., Denevich S., Munson K., Sachs G., *Biochemistry*, 41, 12755–12762 (2002).
- 19) Munson K., Garcia R., Sachs G., *Biochemistry*, 44, 5267–5284 (2005).
- 20) Olesen C., Picard M., Winther A. M., Gyrup C., Morth J. P., Oxvig C., Møller J. V., Nissen P., *Nature*, **450**, 1036–1042 (2007).
- Dürr K. L., Abe K., Tavraz N. N., Friedrich T., J. Biol. Chem., 284, 20147–20154 (2009).
- 22) Holdensen A. N., Andersen J. P., J. Biol. Chem., 284, 12258–12265 (2009).