-Reviews-

二重活性化能を有する酸塩基型不斉有機分子触媒の開発と aza-Morita-Baylis-Hillman 反応への展開

滝澤 忍

Development of Acid-Base Organocatalysts for Enantioselective aza-Morita-Baylis-Hillman (aza-MBH) Reactions *via* Dual Activation Mechanism

Shinobu TAKIZAWA

The Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan

(Received May 30, 2009)

This review describes our recent efforts in the development of acid-base organocatalysts, (S)-3-(N-isopropyl-N-3-pyridinylaminomethyl) BINOL (6a) and (S)-3-[2-(diphenylphosphino) phenyl] BINOL (13a), with dual activation mechanism for the aza-Morita-Baylis-Hillman (aza-MBH) reaction. In these catalysts, chiral Brønsted acid units are connected with a Lewis base unit *via* a spacer. The acid-base moieties act cooperatively as an enzyme-mimetic catalyst to activate substrates in the carbon-carbon bond forming reaction between enones and N-tosylimines with high enantioselectivity.

Key words—aza-Morita-Baylis-Hillman reaction; acid-base organocatalyst; 1,1'-bi-2-naphthol; enantioselective reaction; dual activation

1. はじめに

生体内で触媒として働く酵素は、酵素の活性中心 に含まれる金属やアミノ酸由来の官能基の協調的な 作用により、穏和な条件下で反応を促進する.反応 性に乏しい大気中の窒素ですらアンモニアに還元す るニトロゲナーゼや、タンパク質のペプチド結合を 加水分解するプロテアーゼはその代表例である.筆 者らは、この酵素にみられる多点制御機能を取り入 れた高活性な人工の触媒(二重活性化型触媒)の開 発を行っている.¹⁻³⁾二重活性化型触媒は、大別す ると Fig. 1 の 3 種に分類できる.

2種類の触媒を用いるタイプ1⁴⁾では、様々な種 類や量の触媒を組み合わせて検討できる反面、2種 類の触媒の協調作用を制御することは困難である。 タイプ2に示す、1つの官能基が酸としても塩基と しても機能し得る触媒では、触媒の改良を活性中心

大阪大学産業科学研究所 (〒567-0047 茨木市美穂ヶ丘 8-1)

e-mail: taki@sanken.osaka-u.ac.jp

本総説は、平成21年度日本薬学会奨励賞受賞を記念して記述したものである。

の官能基以外の部位の分子修飾で行わざるを得ない という制限が生じる、実際、このカテゴリーに分類 される秋山、5) 寺田6らによって独立に開発された リン酸エステル型の触媒では、キラル源となってい るビナフチル骨格の3及び3'位の修飾により多く の反応において良好な結果が報告されている.筆者 らが主に研究を進めているのは、タイプ3に属する 1つの触媒分子に反応促進に必要な複数の官能基を 導入した触媒である."触媒中の複数の官能基が協 調して働くためには、それぞれの官能基の反応活性 化能のバランスや空間的配置が重要である. これま でに報告した複合金属不斉触媒⁸⁾や二核バナジウム 触媒2,9-12)は、酵素に比較すると単純な構造なが ら、新規反応の開発や高い立体選択性の発現に成功 している、本総説では、この二重活性化型触媒の概 念を、 金属を含まない有機触媒に取り入れた酸塩基 型不斉有機分子触媒の開発について述べる.3,13-15)

2. ピリジン系触媒を用いる不斉 aza-Morita-Baylis-Hillman (aza-MBH) 反応

Morita-Baylis-Hillman 反応(MBH 反応)は、ア ルデヒドとエノンの形式的付加反応である.^{16,17)}こ

Type 1: two different kinds of catalysts

Fig. 1. Dual Activation Systems in Catalytic Enantioselective Reactions

の MBH 反応は、1968 年に森田が見い出したにも かかわらず、1972年に特許を取得した Baylis と Hillman の名前のみを冠して呼ばれることが多い. この MBH 反応を、アルデヒドの代わりにイミンと の反応に展開したのが aza-MBH 反応である.¹⁸⁾ aza-MBH 反応では、アミンやホスフィンのような ルイス塩基触媒がエノンに Michael 付加反応(1,4-付加反応) することでエノラート I が生じる. これ がイミンと Mannich 反応することにより炭素-炭素 結合が生成する. 中間体 II から触媒が逆 Michael 反応により再生すると、高度に官能基化されたアリ ルアミンが得られる (Scheme 1). aza-MBH 反応 は、多段階である上に律速段階に炭素-炭素結合の ステップとその次のプロトン移動のステップが係わ っていることから一般に反応の促進が困難であ Z. 19-22)

筆者らは、本反応に有効な有機分子触媒を構築す るには、基質であるエノンを活性化する酸性及び塩 基性部位の不斉骨格への適切な位置への導入が重要 と考えた.そこで Scheme 2 に示すように光学活性 ビナフトール (BINOL) の3 位にスペーサーを介 してルイス塩基部位を導入した不斉有機分子触媒を デザインした.BINOL は、様々な不斉反応におい

Scheme 1. Mechanism of the aza-MBH Reaction

て高い汎用性を示し、両鏡像体が入手容易な市販化 合物である.^{23,24)} また、BINOL の 3 位は、化学修 飾が容易であり、様々な官能基を導入することが可

大阪大学産業科学研究所准教授. 富山 医科薬科大学薬学部卒業. 同大学院博 士前期課程修了. 大阪大学大学院薬学 研究科博士課程修了. 大阪大学産業科 学研究所助手. スクリプス研究所博士 研究員. 大阪大学産業科学研究所助教. 2009 年より現職. 専門: 有機合成化 学, 創薬化学, 有機金属化学

Scheme 2. aza-MBH Reaction Promoted by Chiral Acid-Base Organocatalysts with Dual Activation Mechanism

能である.本触媒を用いれば,触媒の酸性部位が基 質のカルボニル基を活性化することで,ルイス塩基 性部位の Michael 付加反応と,これに引き続く Mannich 反応が促進して,対応する付加体が効率 よく得られると考えた.

メチルビニルケトンとイミンとの aza-MBH 反応 において、ルイス塩基触媒である 2-ジメチルアミ ノピリジン (2-dimethylaminopyridine, 2-DMAP),

3-ジメチルアミノピリジン(3-dimethylaminopyridine, 3-DMAP), 4-ジメチルアミノピリジン(4-dimethylaminopyridine, 4-DMAP)を用い検討したところ, 3-DMAPと4-DMAPに触媒活性がみられた(Table 1, Entries 3-5).そこでBINOLの3位に直接ジメチルアミノピリジル基を導入した有機分子1a-1cを合成した.しかしながら, 1a-1cの触媒活性は低かった(Entries 8-10).

次にピリジニルアミノ基をメチレンスペーサーを 介して BINOL の 3 位に導入した有機分子 2a-2c を 合成した. 有機分子 2a にのみ触媒活性がみられ, 収率 41%, 73% ee で 5a を与えた (Entry 11). 有 機分子 1a-1c 及び 2b, 2c に触媒活性がみられない のは, エノンを活性化するブレンステッド酸部位及 びルイス塩基部位の配置が適切でなく,二重活性化 が期待できないためと考えられる. なお, (S)-BINOL と 3-DMAP あるいは, (S)-BINOL と 4-DMAP の共存下に 3a と 4a の azaMBH 反応を行っ た場合,得られる 5a はラセミ体であることを確認 している (Entries 6 and 7).

Table 1. Organocatalytic Enantioselective aza-MBH Reaction of 3a with 4a

O J 3a	+ H organoca 4a	atalyst ₂ , rt	0 N 	HTs
Entry	Organocatalyst	Time (h)	Yield (%)	Ee (%)
1	None	48	NR	_
2	(S)-BINOL	48	NR	—
3	2-DMAP	48	NR	
4 ^{<i>a</i>)}	3-DMAP	48	27	
5 ^{<i>a</i>)}	4-DMAP	7.5	55	
6 ^{<i>a</i>,<i>b</i>)}	(S)-BINOL+3-DMAP	168	48	3
$7^{a,b)}$	(S)-BINOL+4-DMAP	8	60	2
8	1a	168	trace	33
9	1b	168	21	2
10	1c	168	56	2
11	2a	168	41	73
12	2b	168	NR	_
13	2c	168	NR	

a) Decomposition of **4a** was observed. b) $10 \mod \%$ of (S)-BINOL and $10 \mod \%$ of 3- or 4-DMAP were used.

3a	+ H H CI	2a or 6 (10 mol%) solvent	O NHTs 	CI		N
Entry	Organocatalyst	Solvent	Temp. (°C)	Time(h)	Yield (%)	Ee(%)
1	R = Me(2a)	Et ₂ O	rt	108	74	72
2	R = Me(2a)	t-BuOMe	rt	72	92	73
3	R = Me(2a)	CPME	rt	72	97	78
4	R = Me (2a)	DME	rt	60	73	68
5	R = Me (2a)	THF	rt	48	71	59
6	R = Me (2a)	toluene	rt	24	81	72
7	R = Me (2a)	CH_2Cl_2	rt	24	quant.	59
8	R = Me (2a)	CPME ^a /toluene (9/1)	rt	72	93	83
9	R = Me (2a)	CPME/toluene (9/1)	-15	144	97	90
10	R = i-Pr (6a)	CPME/toluene (9/1)	-15	60	96	95
11	R = H (6b)	CPME/toluene (9/1)	-15	240	62	87
12	R = Et (6c)	CPME/toluene (9/1)	-15	132	90	91
13	R = t-Bu (6d)	CPME/toluene (9/1)	-15	240	72	83
14	R = Bn (6e)	CPME/toluene (9/1)	-15	72	quant.	93

Table 2. Effect of Reaction Solvent and N-Substituent R on Bifunctional Organocatalysts

a) Cyclopentyl methyl ether

次に反応溶媒の効果について検討を行った(Table 2).

エーテル系溶媒 (Entries 1-5) 及び toluene (Entry 6) を用いた際に,高エナンチオ選択的に反応 が進行し,特に,CPME/toluene (9/1) 混合溶媒 を用いた場合に,83% eeで5bが得られた(Entry 8).反応温度を-15℃にすると5bの不斉収率は 90% eeまで向上した(Entry 9).また,触媒のア ミノ基上の置換基を検討したところ,*i*-Pr 基を有す る 6a を用いた場合に,5b を 95% ee で得た(Entry 10).なお,ピリジル基やアミノ基の役割を解明す るために合成した有機分子 7-10 では,活性は全く みられず反応は進行しなかった.また,有機分子 11,12 のようにフェノール性ヒドロキシ基を保護す ると,2' 位保護体 11 において触媒活性の低下が顕 著にみられ,反応 10 日間で 5a を収率 5%,24% ee で与えるに過ぎなかった.2 位保護体 12 を用いた 場合,若干の反応性の低下 (5a:85% yield,79% ee, 10 days) が確認された.これらの結果は,触媒 6a の 2 つのフェノール性ヒドロキシ基のうち,2' 位 のヒドロキシ基,並びにアミノ基とピリジル基の両 方が反応の促進とエナンチオ選択性の発現に必須で

Fig. 2. Molecular Model of 6a

Fig. 3. Acid-Base Organocatalysts Having an Aromatic Rings as Spacer for a Lewis Base Unit

あることを示唆している.2位のヒドロキシ基と触 媒のベンジル位窒素は、水素結合によって6員環を 形成して有機触媒分子のコンホメーションを固定す るために役立っていると考えている(Fig.2).¹⁵⁾

3. ホスフィン系不斉酸塩基型有機分子触媒

先のアミノピリジル基を有する酸塩基型不斉有機 分子触媒の開発研究から、ルイス塩基部位をビナフ チル骨格の3位に固定する際、スペーサーのデザイ ンが触媒活性に大きな影響を与えることが明らかと なった.そこで、触媒コンホメーションの固定化を 期待し、比較的分子配座の自由度が制限される芳香 環をスペーサーに、ルイス塩基であるホスフィノ基 の導入した有機分子触媒を合成した(Fig. 3).

まず,二重活性化能が十分期待できるオルトホス フィノ体 13a を合成したところ,予想通り高い触媒 活性とエナンチオ選択性が確認できた(Table 3, Entry 1).比較のために、メタホスフィノ体 13b 並 びに、パラホスフィノ体 13c を合成した.トリフェ ニルホスフィンのみを用いた場合でも(Entry 10), 反応は効率よく進行することから、メタ、パラホス フィノ体 13b, 13c では、塩基性部位が酸性部位と の協調的活性化に不適切な位置であるため、塩基性 部位のみが触媒として機能し、その結果、エナンチ オ選択性が低下すると考えられる.反応条件を精査 した結果、*t*-BuOMe 溶媒中反応温度-20℃,かつ 高希釈条件 0.05 M にて反応を行うと 5b が収率 90 %, 92% ee で得られた (Entry 7). さらなる触媒活 性の向上を期待して様々なオルトホスフィノ体 13d -13i を合成したものの, 触媒活性が低下するのみ で (化学収率<80%, 不斉収率<88% ee), 合成した中では, 13a が最も高い触媒活性を示した.

反応基質の一般性について、先のアミノピリジル 基を有する触媒 6a の結果とともに Table 4 に示 す.われわれの開発した酸塩基不斉有機分子触媒 13a, 6a は、電子吸引性、電子供与性いずれの置換 基を有するイミン誘導体4においても、高化学収 率,高不斉収率で目的生成物5を与える.一方,工 ノンとしては、メチル、エチル、フェニルビニルケ トン及びアクロレインが適用可能である. 興味深い ことに 13a と 6a は、ともに (S)-BINOL 骨格を持 つ有機分子触媒であるものの, 生成物5の絶対配置 は、13aからは S体が、6aからは R体が得られ る.われわれの触媒反応では、生成物の逆 aza-MBH 反応は起きていないことを確認している。し たがって、生成物の不斉発現は、エノラートとイミ ンとの Mannich 反応における触媒活性部位の不斉 環境に起因すると考えられる.現在,本選択性の詳 細を解析している.

³¹P NMR より 13a は, (S,S)-13a, (S,R)-13a の平 衡状態 [(S,S)-13a : (S,R)-13a=1 : 2] にあること

	20	. 4 6	organocatalyst	(10 mol%)	5 h		
3		+ 40 -	solver	nt	dC		
Entry	Organocatalyst	Solven	t ^a Temp. (°C)	Time(h)	Yield (%)	Ee(%)	
1	13 a	THF	0	20	62	70	
2	13b	THF	0	18	93	5	
3 ^{b)}	13c	THF	0	12	88	1	
4	13a	Et ₂ O	0	20	44	79	
5	13a	DME	0	20	36	67	
6	13a	t-BuOM	<i>A</i> e 0	20	72	82	
$7^{c)}$	13 a	t-BuOM	∕le −20	144	90	92	
8	None	THF	0	24	NR		
9	(S)-BINOL	THF	0	24	NR		
$10^{b)}$	PPh ₃	THF	0	3	70	_	
$11^{b,d)}$	(S) -BINOL + PPh	3 THF	0	4	75	1	

Table 3. Ena	ntioselective aza-MBH	Reaction of 3a with	4a Promoted by	Organocatalysts
--------------	-----------------------	---------------------	----------------	-----------------

a) 0.5 M (substrate concentration of 3a). b) Decomposition of 3a was observed. c) Performed in 0.05 M (concentration of 3a). d) 10 mol% of (S)-BINOL and 10 mol% of PPh₃ were used.

Table 4. Enantioselective aza-MBH Reaction of 3 with 4 Promoted by Organocatalysts 6a and 13a

		HTs R ² 13a (10 mol%) <i>t</i> -BuOMe, -20°C		+ H R ²	6a (10 r toluene-CP	mol%) ME, -15°C F	$R^1 \xrightarrow{O} \underline{N}HTs$ $R^2 \xrightarrow{V} R^2$	
	(S)- 5		3	4			(R)- 5	
				13a ^{<i>a</i>)}			6a ^{<i>a</i>)}	
Entry	\mathbb{R}^1	R ²	Time (h)	Yield (%) of 5	Ee (%) of 5	Time (h)	Yield (%) of 5	Ee (%) of 5
1	Me (3a)	Ph (4a)	216	97	87	168	93	87
2	Me (3a)	p-Cl-C ₆ H ₄ (4b)	144	90	92	60	96	95
3	Me (3a)	p-F-C ₆ H ₄ (4c)	168	quant.	89	72	95	93
4	Me (3a)	p-Br-C ₆ H ₄ (4d)	96	87	92	36	93	94
5	Me (3a)	p-CN-C ₆ H ₄ (4e)	144	91	78	60	quant.	91
6	Me (3a)	p-Me-C ₆ H ₄ (4f)	240	82	89	192	90	90
7	Me (3a)	p-Et-C ₆ H ₄ (4 g)	192	quant.	93	120	97	93
8	Me (3a)	p-MeO-C ₆ H ₄ (4h)	216	90	95	132	93	94
9	Me (3a)	o-Cl-C ₆ H ₄ (4i)	144	96	92 ^{c)}	84	92	$62^{(d)}$
10	Me (3a)	$m - NO_2 - C_6 H_4$ (4j)	144 ^{b)}	92	73	24	94	86
11	Me (3a)	m-Cl-C ₆ H ₄ (4k)	168	87	77	72	93	93
12	Me (3a)	$p-NO_2-C_6H_4$ (41)	96 ^{b)}	93	88	12	91	91
13	H (3b)	$p-NO_2-C_6H_4$ (41)	$72^{b)}$	95	83	36	95	94
14	Et (3c)	$p-NO_2-C_6H_4$ (41)	144 ^{b)}	87	89	96	88	88
15	Ph (3d)	$p-NO_2-C_6H_4$ (41)	192 ^{b)}	85	84	192	91	58
16	Me (3a)	2-furyl (4m)	72	93	94 ^{c)}	48	quant.	88^{d}
17	Me (3a)	1-naphthyl (4n)	360	85	90	288	88	70
18	Me (3a)	2-naphthyl (40)	192	91	89	108	94	91

a) Reaction time, isolated yield and ee were obtained by using 6a, 13a under optimal conditions. b) Performed at -40° C. c) R-form. d) S-form.

を確認している (Fig. 4). なお, (*S*,*S*)-13a, (*S*,*R*)-13a の帰属は,別途合成した単離可能なナフチル-ビナフチル骨格を持つ (*S*,*S*)-14a, (*S*,*R*)-14a との

比較により決定した.3)

有機分子触媒 13a のナフチル-フェニル骨格の軸回転の役割を明らかにするために, (*S*,*S*)-14a,

Fig. 4. Organocatalysts 13–15

(*S*,*R*)-14a を 3a と 4b との aza-MBH 反応に適用 し, 比較検討を行った. その結果, 反応は, (S,S) -14a>13a>(S,R)-14aの順に速く、エナンチオ選 択性は、13a>(S,R)-14a>(S,S)-14aの順に高かっ た(Table 5).反応速度の差は、2位の酸性部位で あるフェノール性ヒドロキシ基と塩基性部位である ホスフィノ基の水素結合による安定化が原因と考え られる.以上の結果から筆者らは、Scheme 3 に示 すような触媒反応機構を提唱している. すなわち. より高い不斉収率で Mannich 反応を促進する (S,R)-form 中間体 II から Mannich 反応により生 じた III が、よりルイス塩基部位が逆 Michael 反応 しやすい (S,S)-form 中間体 IV を経ることにより、 生成物を与える機構である. なお, ブレンステッド 酸部位である 2,2' 位フェノール性ヒドロキシ基の 効果については、2位保護体 15b には、活性がほと んどみられず, 2' 位保護体 15c では逆配置の生成 物が得られることから、高エナンチオ選択性発現に は、2つのブレンステッド酸部位が必要であること が明らかとなっている.

4. イミダゾール系不斉酸塩基型有機分子触媒

最近,イミダゾール部位を塩基性部位として有す る不斉有機分子触媒が,ニトロオレフィン 16 を基 質とする aza-MBH 反応を促進することを見い出し た(Fig. 5).²⁵⁾ 16 と 4a との反応において,触媒 18 は,57% ee で付加体 (-)-17 を与える. 触媒 18

Table 5. Enantioselective aza-MBH Reaction of 3a with 4b Promoted by Organocatalysts 13–15

20 L	organ	ocataly	/st (10	mol%) 5 Fb		
Ja ⊤	4D —	<i>t-</i> BuOMe					
Entry	Organocatalyst	Temp. (°C)	Time (h)	Yield (%)	Ee (%)		
1	(<i>S</i> , <i>S</i>)-14a	-20	108	88	41 (<i>S</i>)		
2	13 a	-20	144	90	92 (<i>S</i>)		
3	(S,R) -14a	-20	216	75	65 (<i>S</i>)		
4	15 a	0	144	NR	_		
5	15b	0	86	5	63 (<i>S</i>)		
6	15c	0	48	95	61 (<i>R</i>)		

と同一の立体配置であるものの、 H_8 -ビナフチル骨 格を持つ触媒 19 を合成して、aza-MBH 反応に用い ると触媒 18 を用いた場合とは逆の絶対配置を持つ 生成物 (+)-16 が 57% ee で得られた.本反応は、 ニトロオレフィンを基質とする不斉 aza-MBH 反応 の初めての例であり、筆者らが既に開発しているピ リジン系触媒 6a、ホスフィン系触媒 13a、及び Shi、畑山、岩淵らにより報告されている aza-MBH 反応を促進する触媒 20²⁶⁾ や β -ICD²⁷⁾ では、本反応 は全く進行しないことが明らかとなっている.現 在、収率及びエナンチオ選択性の向上を目指して研 究を行っている.

(S,S)-form

Scheme 3. Plausible Reaction Mechanism Promoted by Organocatalyst 13a

IV

Fig. 5. aza-MBH Reaction of Imine 4a with 2-(2-Nitrovinyl) furan (16) Promoted by Organocatalysts 18 and 19

5. まとめ

筆者らは、エノンとイミンとの炭素-炭素結合形 成反応である aza-MBH 反応に有効な二重活性化能 を有する酸塩基型不斉有機分子触媒の開発に成功し た、有機分子触媒は、金属を含む触媒と比較して活 性を失いにくく, 触媒由来の金属による生成物の汚 染もないことから環境調和型の次世代触媒として有 望である.28-36) その反面, 触媒活性が金属触媒に比 べて劣ることが多い.現在,二重活性化型触媒を効 率的にデザインすることによる触媒活性の効率化や 新規反応への開拓を検討している。例えば、酸塩基 型有機分子触媒では、Mayr の提唱している求核 性・求電子性指標37-40)を取り入れてデザインの一般 化を図っている.スペーサーのデザインや触媒分子 内の水素結合によるコンホメーションの固定化を利 用することで、酸塩基中和による失活を伴うことな く、触媒活性を飛躍的に高めることも可能となりつ つある. 触媒の固定化による再利用も検討すべき課

ш

(S,R)-form

題の1つである.

謝辞 本研究は大阪大学産業科学研究所にて行われたものであり、終始ご指導頂きました大阪大学 産業科学研究所笹井宏明先生、絶えず温かく見守り 励まして下さいました立命館大学薬学部北 泰行先 生に感謝致します.また、貴重なご助言を頂きまし た、大阪大学大学院理学研究科鬼塚清孝先生、大阪 大学産業科学研究所鈴木健之先生、竹中和浩先生に 感謝致します.研究に直接ご助力頂きました、松井 嘉津也博士、田中浩一修士、堀井厚志修士には格別 の感謝の意を表します.最後に本プロジェクト遂行 に当たり、経済的支援を賜りました、独立行政法人 科学技術振興機構に深謝致します.

REFERENCES

- Takizawa S., Arai T., Sasai H., J. Synth. Org. Chem. Jpn., 67, 194–207 (2009).
- Takizawa S., Katayama T., Sasai H., Chem. Commun., 4113–4122 (2008).
- 3) Takizawa S., Matsui K., Sasai H., J. Synth. Org. Chem. Jpn., 65, 1089–1098 (2007).
- 4) Corey E. J., Wang Z., *Tetrahedron Lett.*, **34**, 4001–4004 (1993).
- Akiyama T., Itoh J., Yokota K., Fuchibe K., Angew. Chem. Int. Ed., 43, 1566–1568 (2004).
- 6) Uraguchi D., Terada M., J. Am. Chem. Soc., 126, 5356-5357 (2004).
- 7) Shibasaki M., Sasai H., Arai T., Angew. Chem. Int. Ed. Engl., 36, 1236-1256 (1997).
- Matsui K., Takizawa S., Sasai H., Tetrahedron Lett., 46, 1943–1946 (2005).
- Somei H., Asano Y., Yoshida T., Takizawa S., Yamataka H., Sasai H., *Tetrahedron Lett.*, 45, 1841–1844 (2004).
- Takizawa S., Katayama T., Kameyama C., Onitsuka K., Suzuki T., Yanagida T., Kawai T., Sasai H., *Chem. Commun.*, 1810–1812 (2008).
- Takizawa S., Katayama T., Somei H., Asano Y., Yoshida T., Kameyama C., Rajesh D., Onitsuka K., Suzuki T., Mikami M., Yamataka H., Jayaprakash D., Sasai H., *Tetrahedron*, 64, 3361-3371 (2008).
- 12) Takizawa S., Rajesh D., Katayama T., Sasai

H., Synlett, 1667–1669 (2009).

- Matsui K., Takizawa S., Sasai H., J. Am. Chem. Soc., 127, 3680-3681 (2005).
- 14) Matsui K., Takizawa S., Sasai H., Synlett, 761-765 (2006).
- Matsui K., Tanaka K., Horii A., Takizawa S., Sasai H., *Tetrahedron: Asymmetry*, 17, 578– 583 (2006).
- Morita K.-I., Suzuki Z., Hirose H., Bull. Chem. Soc. Jpn., 41, 2815–2819 (1968).
- 17) Baylis A. B., Hillman M. E. D., German Patent 2155113 (1972) [Chem. Abstr., 77, 34179q (1972)]
- 18) Declerck V., Martinez J., Lamaty F., Chem. Rev., 109, 1-48 (2009).
- Price K. E., Broadwater S. J., Walker B. J., McQuade D. T., J. Org. Chem., 70, 3980– 3987 (2005).
- Price K. E., Broadwater S. J., Jung H. M., McQuade D. T., Org. Lett., 7, 147–150 (2005).
- Aggarwal V. K., Fulford S. Y., Lloyd-Jones G. C., Angew. Chem. Int. Ed., 44, 1706–1708 (2005).
- Buskens P., Klankermayer J., Leitner W., J. Am. Chem. Soc., 127, 16762–16763 (2005).
- 23) Brunel J. M., Chem. Rev., 105, 857–898 (2005).
- 24) Love B. E., Curr. Org. Synth., 3, 169–185 (2006).
- 25) Rastogi N., Mohan R., Panda D., Mobin S.
 M., Namboothiri I. N. N., Org. Biomol. Chem., 4, 3211–3214 (2006).
- Shi M., Chen L.-H., Li C.-Q., J. Am. Chem.
 Soc., 127, 3790–3800 (2005).
- 27) Kawahara S., Nakano A., Esumi T., Iwabuchi Y., Hatakeyama S., Org. Lett., 5, 3103–3105 (2003).
- 28) Balan D., Adolfsson H., Tetrahedron Lett.,
 44, 2521–2524 (2003).
- Raheem I. T., Jacobsen E. N., Adv. Synth. Catal., 347, 1701–1708 (2005).
- 30) Utsumi N., Zhang H., Tanaka F., Barbas C.
 F. III., Angew. Chem. Int. Ed., 46, 1878–1880 (2007).
- Masson G., Housseman C., Zhu J., Angew. Chem. Int. Ed., 46, 4614–4628 (2007).
- Ito K., Nishida K., Gotanda T., *Tetrahedron Lett.*, 48, 6147–6149 (2007).

- Vesely J., Dziedic P., Cordova A., Tetrahedron Lett., 48, 6900–6904 (2007).
- 34) Abermil N., Masson G., Zhu J., J. Am. Chem. Soc., 130, 12596–12597 (2008).
- 35) He L., Zhang Y.-R., Huang X.-L., Ye S., *Syn*thesis, 2825–2829 (2008).
- Garnier J.-M., Anstiss C., Liu F., Adv. Synth. Catal. 351, 331–338 (2009).
- Mayr H., Kempf B., Ofial A. R., Acc. Chem. Res., 36, 66-77 (2003).
- 38) Kempf B., Mayr H., Chem. Eur. J., 11, 917– 927 (2005).
- 39) Brotzel F., Kempf B., Singer T., Zipse H., Mayr H., Chem. Eur. J., 13, 336-345 (2007).
- 40) Brotzel F., Chu Y. C., Mayr H., J. Org. Chem., 72, 3679–3688 (2007).