-Reviews-

アンジオテンシンタイプ2受容体を介した血管弛緩機構

屋山勝俊,岡本 博*

Angiotensin Type 2 Receptor-Dependent Vasodilation

Katsutoshi YAYAMA and Hiroshi OKAMOTO

Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University, 1–1–3 Minatojima, Chuo-ku, Kobe 650–8586, Japan

(Received May 21, 2007)

Angiotensin II (Ang II) signaling is mediated by two receptor subtypes, type 1 (AT₁) and type 2 (AT₂). The activation of AT₁ receptors is responsible for the development of Ang II-dependent hypertension, whereas the activation of AT₂ receptor is thought to play a counter-regulatory protective role in the regulation of blood pressure that opposes the AT₁ receptor-mediated vasoconstriction. However, the precise mechanisms by which increased numbers of AT₂ receptors counterbalance the AT₁-mediated actions of Ang II are unknown. We have demonstrated that the abdominal aortic banding in mice and rats and the 2-kidney, 1-clip Goldblatt model of hypertension in mice induces up-regulation of AT₂ receptors in the pressure-overloaded thoracic aorta. In these hypertensive animals, the AT₁-receptor antagonists but not calcium antagonist abolish up-regulates the aortic AT₂ receptor by Ang II via the activation of AT₁ receptor-mediated phosphory-lation of endothelial nitric oxide synthase (eNOS) at Ser⁶³³ and Ser¹¹⁷⁷ via a protein kinase A-dependent signaling pathway, resulting in sustained production of nitric oxide. These studies provide evidence that the vascular AT₂ receptor is up-regulated in the course of hypertension through the activation of AT₁ receptor, thereby activating a vasodilatory pathway in vessels through the AT₂ receptor via the bradykinin/nitric oxide/cGMP. This issue is important because the antihypertensive effect of AT₁-receptor blockers is, at least in part, dependent on AT₂-receptor activation.

Key words—hypertension; angiotensin II; AT₂ receptor; bradykinin; nitric oxide

1. はじめに

高血圧は、心疾患や動脈硬化などの循環器系疾患 や突然死の最大の原因であり、わが国では 60 歳以 上の約半数が高血圧症である。高血圧症によるこれ ら循環器系疾患発症の機序は複雑であり、これまで 多くの研究がなされてきたが、基本的には持続的圧 負荷に対する心血管系の代償反応に基づくと考えら れている。高血圧による心臓での代償反応は後負荷 増大に伴う心肥大の進展であり、血管系では血管壁 肥厚として現れる。そのため高血圧は、心肥大、血 管肥厚、虚血性心疾患、心不全や腎・脳血管障害な どあらゆる心血管系疾患の重大な危険因子とされ、

神戸学院大学薬学部生命薬学部門循環器薬理学研究室
(〒650-8586 神戸市中央区港島1丁目1-3)
*e-mail: okamotoh@pharm.kobegakuin.ac.jp
本総説は、日本薬学会 127 年会シンポジウム S19 で発表したものを中心に記述したものである.

その成因解明,予防,治療法の確立はこの分野にお いて極めて重要な課題となっている.

高血圧発症には様々な循環調節因子が関与する が、アンジオテンシンII (Ang II) はそれらの中で 最も重要な因子の1つである. Ang II はアミノ酸 8 個からなるペプチドで、レニンがアンジオテンシ ノーゲンに作用してアンジオテンシンI (Ang I) を遊離し、アンジオテンシン変換酵素 (ACE) に より Ang II へと変換される (Fig. 1). Ang II は血 管平滑筋の強力な収縮物質であり、またアルドステ ロン分泌を介して体液量を増大させ、高血圧を惹起 する. さらに、心筋細胞のタンパク質合成亢進や心 筋細胞肥大、血管平滑筋や非心筋細胞の増殖刺激、 さらにコラーゲン等の細胞外マトリックス産生刺激 を介して心血管系リモデリングに深く関与してい る.¹⁾ これら Ang II の作用発現は、アンジオテンシ ン愛容体への結合により起こるが、現在、アンジオ

Fig. 1. Two Receptor Subtypes for Ang II in the Renin-Angiotensin System

テンシン受容体には数種類存在すると考えられてい る.そのうち構造が明らかにされているものに、タ イプ1受容体(AT_1 受容体)とタイプ2受容体 (AT_2 受容体)が知られ、上述した Ang II の心血管 作用は AT_1 受容体を介するものである(Fig. 1).^{1,2)} それゆえ、高血圧、心不全あるいは腎疾患での ACE 阻害薬や AT_1 受容体遮断薬の臨床的有用性は、

Ang II 産生あるいは AT₁ 容体レベルでのレニン・ アンジオテンシン(RA) 系の抑制に基づくと考え られてきた.^{2,3)}

さて、ACE はキニン分解酵素キニナーゼ Ⅱ と同 一酵素であり、ACE 阻害薬の薬効の少なくとも一 部はブラジキニン(BK)の分解抑制、あるいはそ の受容体である B₂ 脱感作抑制に基づく BK 作用増 強によるとの多くの証拠が報告されてきた.⁴⁾ また、

AT₁受容体遮断薬は腎レニン分泌を高め、その結 果、循環血中の Ang II レベルを上昇させることか ら、その薬効の少なくとも一部は AT₂ 受容体の活 性化によるとの考えがある.⁵⁾ AT₂ 受容体を介する 生理作用やそのカスケードについては不明であった が、1999 年、AT₂ 受容体を高発現させたトランス ジェニックマウス (AT₂-TG)を用いた Tsutsumi らの研究により、血管 AT₂ 受容体活性化が組織力 リクレインを活性化し、産生された BK の作用(B₂ 受容体)を介した血管弛緩を引き起こすとの報告が なされた.⁶⁾ 実際に、Ang II の慢性投与による血圧 上昇が AT₂-TG マウスではみられず、このように 減弱した Ang II 昇圧反応が、B₂ 受容体遮断薬 icatibant 投与によって再び出現することを認めて いる.⁶⁾ これら一連の研究は,ACE 阻害薬とAT₁ 受容体遮断薬のいずれの薬効においても,それら作 用発現の少なくとも一部に BK が関与することを示 している.^{2,7)}

しかしながら、 AT_2 受容体の生理的、病理的、 特に循環器疾患における役割は依然不明な点が多い。筆者らは、血管機能における AT_2 受容体の役 割を明らかにすることを目的に研究を進めてきた が、本稿では、筆者らが進めてきた一連の研究を中 心に紹介し、 AT_2 受容体を介した Ang II の血管弛 緩作用の機構について概説する。

2. 高血圧負荷が血管 AT₂ 受容体発現を亢進させる

 AT_2 受容体は胎児期に高発現しているが,生後,脳や子宮で発現を認めるものの,正常な血管や 心臓など多くの組織でほとんど発現していない.^{2,8)} そのため, AT_2 受容体の機能を明らかにするに は,上述したような遺伝子改変動物による解析が行 われてきたが,生理的あるいは病的状態での AT_2 受容体機能を知るには限界がある.一方,血管の AT_2 受容体発現は,高血圧や血管傷害のような病 的状態下で変動するとの報告もあるが,^{9,10)}そのよ うな血管における AT_2 機能を明らかにした研究は 報告されていない.

筆者らは,慢性心不全の実験モデルとして広く用いられてきた腹部大動脈狭窄(banding)をラット及びマウスに作成し,左心室への負荷同様に,胸部大動脈への圧負荷形成がAT2 受容体発現にどう影響するかについて検討した.^{11,12)} Banding は胸部大

動脈への機械的負荷とともに、腎血流量低下による 高レニン性高血圧を惹起し、これらによって胸部大 動脈に高血圧負荷を与える.その結果、banding 形 成後4日以内に、ラット及びマウスのいずれにおい ても、胸部大動脈のAT₂受容体 mRNA 発現量に顕 著な増加を認めたが、AT₁受容体並びに B₂ 受容体 mRNA 発現レベルには変化を認めなかった(Fig. 2).このような高血圧負荷に応じた血管 AT₂ 受容 体遺伝子の発現亢進は、ヒト腎性高血圧のモデルで あるマウス 2-kidney、1-clip Goldblatt(2K1C)高血 圧においても認められた.¹³⁾このような banding に よる血管 AT₂ 受容体 mRNA 量増加は、マウスでは 術後1週目まで認められたが(Fig. 2)、¹²⁾ラットで は1ヵ月後においても持続していた.¹¹⁾

このような banding による AT_2 受容体 mRNA 発 現の亢進が、どのように行われるかについて 2 つの 要因の関与を推測した. その 1 つは、 banding に伴 う胸部大動脈への機械的負荷である. 実際に、

Fig. 2. The mRNA Levels of AT₁, AT₂, and B₂ Receptors in the Thoracic Aortas of Mice after Sham-Operation and Aortic Banding

Top: representative RT-PCR Southern blots of AT₁-, AT₂-, and B₂receptor mRNA. Bottom: bar graph showing densitometric data for AT₂receptor mRNA expressed as a ratio against GAPDH mRNA. Values are the mean ±S.E. of sham-operated mice (n=3) and banding mice (n=7–11). *p<0.01, **p<0.001, ***p<0.0001 vs sham. Data are from Ref. 12). banding 後の頚動脈血圧は、ラット・マウスのどち らにおいても約 30 mmHg の上昇を示し、これが胸 部大動脈圧として機械的ストレスを与えると考えら れた. もう1つの可能性は、腎血流量低下による循 環血中 RA 系亢進であり、その結果、増加した血中 Ang II は血管 AT₁ 受容体を刺激する. このように、 banding による胸部大動脈での AT₂ 受容体発現亢 進が.血管への機械的ストレス又はAT1 受容体活 性化のいずれかに起因する可能性が考えられた. こ のことを証明するため、banding の術後から作用機 構の異なる2種類の血管拡張薬(カルシウム拮抗薬 nicardipine, AT₁ 受容体遮断薬 losartan) を投与 し、血管 AT₂ 受容体 mRNA 量を測定した. その結 果,いずれの薬物でも banding による頚動脈圧上 昇が抑えられたにも係わらず, banding による AT₂ 受容体 mRNA 増加はニカルジピンで影響されず、 losartan で完全に抑制された (Fig. 3).¹²⁾ これら結 果から, banding による血管 AT₂ 受容体の発現亢 進は、AT₁ 受容体を介した Ang II 作用によるもの

Fig. 3. Effects of Losartan and Nicardipine Administration on the Levels of AT₂-receptor mRNA in the Thoracic Aorta of Mice 4 Days after Sham-Operation and Aortic Banding

Losartan potassium (1 mg/kg, once a day) or nicardipine HCl (2 mg/kg, twice a day) was intraperitoneally administered into mice for 4 days after sham-operation and banding. The animals were then euthanized on day 4 to allow for the detection of AT₂-receptor mRNA by RT-PCR Southern blotting. The control groups of sham and banding animals received saline. Top: representative blots. Bottom: bar graph shows densitometric data for AT₂-receptor mRNA expressed as a ration against GAPDH mRNA. Values are the mean ±S.E., n=3 to 10 animals in each group. *p<0.001 vs saline-treated shand, *p<0.001 vs saline-treated banding, [±]p>0.1 vs saline-treated banding. Data are from Ref. 12).

と結論した. 同様の結果は, 腎性高血圧モデルであ る 2K1C 高血圧マウスにおいても認められた.¹³⁾ で は, このような Ang II による, AT₁ 受容体を介し た AT₂ 受容体発現の増加には, どのような生理的 意味があるのであろうか?これらいずれの高血圧モ デルにおいても, 循環血中 Ang II レベルの増加は 血管 AT₁ 受容体を介して血圧上昇に働くが, 同時 に誘導される AT₂ 受容体により Ang II 作用を血管 弛緩の方向へと切り替え, それによって血管を過剰 な圧負荷から開放するよう働くものと想像される.

Banding 後の血中レニン濃度の増加は,2-3日で ピークに達し、1週間以内に正常レベルに戻る.¹¹⁾ しかし、既に述べたように、特にラットの大動脈 AT₂ 受容体 mRNA レベルは、banding 後、少なく とも1ヵ月に渡って高いまま維持される.すなわ ち、循環血中の Ang II レベルだけでは、AT₁ 受容 体を介した AT₂ 受容体発現の機構を説明できず、 恐らくは血管独自に局在する RA 系の関与が重要で あろうと思われる.¹⁴⁾

3. AT₂ 受容体発現が亢進した大動脈の Ang II 収縮応答性は減弱する

Ang II の AT₂ 受容体刺激は、AT₁ 受容体刺激に よる血管収縮作用に拮抗すると報告されてきた. そ こで実際に、AT₂ 受容体 mRNA 発現が亢進した血 管において、Ang II の収縮応答に変化がみられる かを、banding あるいは 2K1C 高血圧のラット・マ ウスから胸部大動脈を摘出し検討した. 摘出血管の リング標本は、Ang II の濃度に依存して収縮反応 を示すが、banding あるいは 2K1C 高血圧マウスか ら摘出した胸部大動脈では、その収縮応答性に明ら かな減弱が認められた(Fig. 4).¹²⁾ このような Ang II 収縮反応の減弱は、血管の最大収縮においてみ られ、AT₁ 受容体感受性の低下によるものではな い.

このような血管での Ang II 収縮応答性の減弱は, AT₂ 受容体選択的遮断薬である PD123319 の存在下 で完全に抑制された.また, B₂ 受容体選択的遮断 薬である icatibant によっても消失した(Fig. 4).¹²⁾ よって, AT₂ 受容体 mRNA 発現が亢進した banding あるいは 2K1C 高血圧マウスの大動脈は, AT₂ 受容体並びに B₂ 受容体の両者に依存して, AT₁ 受 容体を介した Ang II の血管収縮作用に拮抗すると 結論付けられる.また,一酸化窒素(NO)合成酵 素阻害薬である N^G-nitro-L-arginine methyl ester (L-NAME) で血管リング標本を前処置することによ り, Ang II 収縮応答性の減弱は認められなくなっ たことから, NO に依存した血管弛緩機構が AT₂ 受容体の下流にあることが推測された (Fig. 4).¹²⁾ 以上の結果から, AT₁ 受容体刺激による Ang II 収 縮作用は, 増加した AT₂ 受容体を介して拮抗さ れ, この拮抗に B₂ 受容体の活性化と NO 産生の亢 進が関与すると考えられた.

NO は血管平滑筋のグアニル酸シクラーゼを活性 化し, cGMP の産生増加により血管平滑筋を弛緩 させる. そこで, これらマウスでの胸部大動脈 cGMP 量を測定したところ, いずれの血管において も顕著な cGMP 量の増加が認められた (Fig. 5).¹²⁾ そこで, このような cGMP 量増加が AT₂ 受容体を 介したものかを知るため, banding あるいは 2K1C 高血圧マウスに AT₂ 受容体遮断薬 (PD123319), あるいは B₂ 受容体遮断薬 (icatibant) を静脈内投 与した. その結果, これらマウスの胸部大動脈 cGMP 量は, 投与 1 時間後に対照動物レベルまで 減少した (Fig. 5).^{12,13)}

このように, banding あるいは 2K1C 高血圧を惹起したマウスの大動脈では, 実際に AT₂ 受容体数が増加し, それを介した血管弛緩応答が B₂ 受容体 \rightarrow NO 産生 \rightarrow cGMP 産生というシグナルにより起こることが明らかとなった.

 AT₂ 受容体発現が亢進した大動脈の NO 産生 は増加する

血管内皮細胞での NO 産生は内皮型 NO 合成酵素(eNOS)により調節されている。eNOS はアセ チルコリンや BK などの血管作動物質や、ずり応力 などの機械的刺激により、内皮細胞の細胞質 Ca²⁺ 濃度が上昇すると、カルモジュリン(CaM)依存 性に一過性に活性化されることが知られてい る.^{15,16)}しかし最近、Ca²⁺に依存しない活性化経 路として、セリン/スレオニンキナーゼである protein kinase B (Akt)を介した、新たな eNOS 活性化 機構が報告された.¹⁷⁻²²⁾ すなわち、血管内皮細胞に ずり応力や血管内皮細胞増殖因子(VEGF)などの 刺激が加わると、phosphoinositide 3-kinase (PI3K) が活性化され、phosphatidylinositol 2-phosphate か ら phosphatidylinositol 3-phosphate (PIP₃)を産生 する. PIP₃ は細胞質の Akt を細胞膜へと動員し、

Fig. 4. Contractile Response to Ang II in Ring Preparations of the Thoracic Aorta

Thoracic aortas were dissected from mice 4 days after sham-operation or aortic banding, and the contractile response to Ang II was compared by constructing cumulative concentration-response curves for Ang II. The results are expressed as the percentage of contraction evoked by 40 mmol/l KCl. A: Comparison of the cumulative concentration-response curves for Ang II in aortic rings between sham-operated and banding mice. B: Effect of PD123319 (PD) on the response to Ang II in aortic rings from sham-operated and banding mice. D123319 (1 µmol/l) was added 15 mins before Ang II challenge. C: Effect of icatibant (ICAT) on the response to Ang II in aortic rings from sham-operated and banding mice. Icatibant (1 µmol/l) was added 15 mins before Ang II challenge. D: Effect of L-NAME on the response to Ang II in aortic rings from sham-operated and banding mice. L-NAME (1 mmol/l) was added 30 mins before Ang II challenge. Values are the mean \pm S.E., n=4 to 5 for each point. *p<0.01 vs sham, *

Akt はそこで 3-phosphoinositide-dependent kinase 1 によりリン酸化され活性型(リン酸化 Akt) となる. 活性化 Akt は eNOS をリン酸化してこれを活性化 し, NO 産生を増加させる. Ca^{2+}/CaM による eNOS 活性化は, 受容体刺激による Ca^{2+} 動員に応 じて一過性であるが, この eNOS リン酸化による Ca^{2+} 非依存性 eNOS 活性化は比較的長時間持続し, NO の持続的産生に関与すると考えられている. ま た, eNOS には何ヵ所かのリン酸化部位が知られて いるが,特に Ser1177 あるいは Ser633 のリン酸化 は, eNOS の活性化を起こすことが明らかにされて いる.^{21,22)}

高血圧負荷により AT₂ 受容体の発現が亢進した 大動脈では, AT₂ 受容体依存性に cGMP 量の増加 が認められたことから, これら血管では eNOS の 持続的な活性化が起こっていると考えられた.そこ で筆者らは、banding 並びに 2K1C 高血圧マウスを 用い、胸部大動脈での総 eNOS 量、リン酸化 eNOS 量について検討を行った.^{13,23)} その結果、これらの マウス大動脈では、総 eNOS 量、Ser1177 がリン酸 化された eNOS (Ser1177)量、Ser633 がリン酸化 された eNOS (Ser633)量のいずれにおいても、対 照マウス大動脈と比較して有意に増加していた (Fig. 6).²³⁾これらの結果は、圧負荷を受けた血管 では総 eNOS 量のみならず、Ser1177 及び Ser633 にリン酸化を受けた eNOS も同時に増加し、これ らによって持続的な NO 産生が生じているものと 考えられた.そこで、これらの eNOS 量の増加が、 AT₂ 受容体の活性化によるものかを明らかにする ため、banding 並びに 2K1C 高血 圧マウスに

Fig. 5. *In Vivo* Effects of Losartan, PD123319, and Icatibant on cGMP Contents in the Thoracic Aortas of Mice 4 Days after Sham-Operation and Aortic Banding

Losartan potassium (20 mg/kg), PD123319 (10 mg/kg), or icatibant (0.5 mg/kg) was intravenously injected into mice 4 days after sham-operation and aortic banding. The control groups of sham and banding animals received saline. Thoracic aortas were excised 1 hr after injection of drugs or saline, and cGMP contents was measured by radioimmunoassay. Values are the mean \pm S.E., n=4 to 5 in each point. *p<0.01 vs saline-treated sham, *p<0.01 vs saline-treated sham, ip 40.01 vs losartan-treated sham, *p<0.01 vs saline-treated banding. Data are from Ref. 12).

PD123319 (AT₂ 受容体遮断薬) あるいは icatibant (B₂ 受容体遮断薬) を投与し,総 eNOS 量並びにリ ン酸化 eNOS 量を測定したところ,総 eNOS 量の 増加は全く影響を受けなかったが、リン酸化 eNOS 量の増加は、ともにこれら遮断薬によって対照マウ スのレベルにまで抑制された(Fig. 6).よって, 高血圧負荷によって増加した大動脈の AT₂ 受容体 は、その eNOS リン酸化を促進するが、総 eNOS 量増加には関与しないことが明らかとなった.^{13,23)}

以上の結果は、高血圧負荷によって増加した大動 脈 AT₂ 受容体が Ang II の刺激を受け、B₂ 受容体の 仲介するシグナル伝達によって eNOS リン酸化を 亢進させ、NO 産生を持続的に高めていることを示 唆する.

5. AT₂ 受容体活性化は Protein kinase A を介して eNOS をリン酸化する

血管へのずり応力, VEGF や estrogen による刺 激は Akt を活性化(リン酸化)し,それによって eNOS のリン酸化(Ser1177)が行われ,NO 産生 が亢進する.^{15,18,19)}では,banding や2K1C 高血圧 を惹起したマウス大動脈でのAT₂ 受容体活性化 と,それに続く B₂ 受容体を介した eNOS リン酸化

Fig. 6. The Protein Levels of eNOS, Phosphorylated eNOS at Ser⁶³³ and at Ser¹¹⁷⁷ in Thoracic Aortas of Mice 4 Days after Sham-Operation or Aortic Banding

PD123319 (1 mg/kg, twice a day) or icatibant (0.5 mg/kg, once a day) were administered intraperitoneally for 4 days after sham-operation or banding. Top: representative Western blots. Bottom: bar graph showing densitometric data for eNOS, eNOS phosphorylated at Ser⁶³³ and at Ser¹¹⁷⁷ as ratios relative to β -actin. Values are the mean±S.E. (*n*=6). **p*<0.001 versus saline-treated sham mice, **p*<0.001 versus saline-treated banded mice. Data are from Ref. 23).

は、同様に活性化 Akt により行われるのであろう か?そこで、これらマウス大動脈での Akt 量と、 その活性型であるリン酸化 Akt (Ser473)量を測定 したところ、両者とも増加することを認めた (Fig. 7).^{13,23)}しかし、これら Akt 量とリン酸化 Akt 量の 増加は、PD123319 あるいは icatibant を投与しても 全く影響を受けなかった (Fig. 7).^{13,23)} このことは、 AT₂ 受容体刺激により引き起こされる eNOS リン 酸化の亢進に、Akt は関与しないことを示す.

このことをさらに詳細に明らかにするため, banding マウスの胸部大動脈から血管リング標本を 作製し,マグヌス装置内で Ang II を添加したの ち,リン酸化 eNOS (Ser1177 及び Ser633)量を測 定した. Banding マウスから摘出したリング標本で は, *in vitro* での Ang II 刺激によってリン酸化

Fig. 7. The Protein Levels of eNOS, Phosphorylated eNOS at Ser⁶³³ and at Ser¹¹⁷⁷ in Thoracic Aortas of Mice 4 Days after Sham-Operation or Aortic Banding

PD123319 (1 mg/kg, twice a day) or icatibant (0.5 mg/kg, once a day) were administered intraperitoneally for 4 days after sham-operation or banding. Top: representative Western blots. Bottom: bar graph showing densitometric data for eNOS, eNOS phosphorylated at Ser⁶³³ and at Ser¹¹⁷⁷ as ratios relative to β -actin. Values are the mean±S.E. (*n*=6). **p*<0.001 versus saline-treated sham mice, **p*<0.001 versus saline-treated banded mice. Data are from Ref. 23).

eNOS 量は増加したが、対照マウスのリング標本で は、Ang II 刺激によっても、そのような作用は認 められなかった (Fig. 8).²³⁾ このような, banding マウス大動脈で認められた Ang II による eNOS リ ン酸化の亢進作用は、マグヌス内に PD123319 ある いは icatibant を添加することによって、ほぼ完全 に抑制されたことから、AT2 受容体を介するもの である (Fig. 8). そこで、このような AT2 受容体 刺激に伴う eNOS リン酸化を検出する実験系に, Akt 活性化の上流にある PI3K の阻害薬, 及び protein kinase A (PKA)の阻害薬を添加し、AT₂ 受容 体刺激が PI3K/Akt 系あるいは PKA 系のいずれに よって eNOS リン酸化へと仲介されるのかを検討 した. その結果, banding マウス大動脈リング標本 での Ang II による eNOS リン酸化の亢進作用は、 PI3K 阻害薬である wortmannin 及び LY24002 のい

Following equilibration for 1 hr in an organ bath, aortic rings were incubated for 30 mins with or without PD123319 (PD: 1 μ mol/l) or icatibant (Icat: 1 μ mol/l), and then treated with Ang II (0.1 μ mol/l) for 10 mins. Top: representative Western blots. Bottom: bar graph showing densitiometric data for eNOS, p-eNOS-Ser⁶³³ and p-eNOS-Ser¹¹⁷⁷ as ratios relative to β -actin. Values are the mean±S.E. (n=8). *p<0.001 versus sham-rings, *p<0.001 versus and II-treated banded-rings; *p<0.001 versus Ang II-treated banded-rings. Bata are from Ref. 23).

ずれによってもほとんど影響されず,一方, PKA 阻害薬である H89 と KT5720 の両者によって強く 抑制された (Fig. 9).²³⁾ これらの結果は, AT₂ 受容 体刺激による eNOS リン酸化の亢進が, PI3K/Akt 系ではなく, PKA 系を介して行われることを示し ている.

このような血管リング標本での実験系を用い, Ang II 刺激後の cGMP 応答について検討した. Banding マウスからのリング標本を Ang II で刺激 すると,顕著な cGMP 量の増加が認められ,この 増加は PD123319 や icatibant のみならず, PKA 阻

Fig. 9. In Vitro Effects of Receptor Antagonists and Protein Kinase Inhibitors on Ang II-Induced Elevation of cGMP in Aortic Rings

Aortic rings were prepared from mice 4 days after sham-operation or banding. Following equilibration for 1 hr in an organ bath, aortic rings were incubated for 30 mins with or without PD123319 (PD; 1 μ mol/l), icatibant (Icat: 1 μ mol/l), wortmannin (Wort: 1 μ mol/l), LY24002 (LY: 10 μ mol/l), H89 (10 μ mol/l) or KT5720 (KT: 10 μ mol/l), then treated with Ang II (0.1 μ mol/l) for 10 mins. Values are the mean \pm S.E. (n=8). *p<0.001 versus sham-rings, *p<0.001 versus untreated banded-rings, *p<0.001 versus Ang II-treated banded-rings. Data are from Ref. 23).

害薬によって強く抑制された(Fig. 10).²³⁾ また, banding マウスの血管リング標本で認められる Ang II 収縮応答性の減弱についても, PI3K 阻害薬でほ とんど影響されず, PKA 阻害薬によりほぼ消失し た(Fig. 11).²³⁾

以上の結果は、AT₂ 受容体の発現量が増加した 血管では、Ang II 刺激による AT₂ 受容体活性化に 続いて B₂ 受容体を介した PKA 活性化が起こり、 これによって eNOS リン酸化が亢進し、NO の持続 的産生による血管弛緩反応が起こっているものと考 察される (Fig. 12). 実際、Akt は eNOS の Ser1177 をリン酸化するが、 24,25 Ser633 リン酸化に関与せ ず、一方、PKA は eNOS の両部位をリン酸化する

Fig. 10. In Vitro Effects of Receptor Antagonists and Protein Kinase Inhibitors on Ang II-Induced Elevation of cGMP in Aortic Rings

Aortic rings were prepared from mice 4 days after sham-operation or banding. Following equilibration for 1 hr in an organ bath, aortic rings were incubated for 30 mins with or without PD123319 (PD: 1 μ mol/1), icatibant (Icat: 1 μ mol/1), wortmannin (Wort: 1 μ mol/1), LY24002 (LY; 10 μ mol/1), H89 (10 μ mol/1) or KT5720 (KT: 10 μ mol/1), then treated with Ang II (0.1 μ mol/1) for 10 mins. Values are the mean \pm S.E. (n=8). *p<0.001 versus Ang II-treated banded-rings, *p<0.001 versus Ang II-treated banded-rings. Data are from Ref. 23).

との報告がある.²²⁾ また培養内皮細胞において, BK 刺激が PKA を介して eNOS リン酸化 (Ser1177) を起こし, NO 産生を高めることが報告されてい る.²⁶⁾ これらの報告と,筆者らの一連の研究結果を 合わせて考察すれば, Ang II による血管(少なく とも大動脈)の AT₂ 受容体刺激は,なんらかの機 構によって血管組織局所での BK 産生を引き起こ し,その BK による内皮細胞の B₂ 受容体刺激が PKA 活性化を介して eNOS リン酸化を亢進させ, NO の持続的産生を起こすと考えられる (Fig. 12),³⁰⁾

6. 今後の課題と展望

本稿では、筆者らの研究を中心に、高血圧負荷を 受けた血管が AT_2 受容体の発現を高め、その結果、 Ang II による血管収縮反応が減弱すること、そし てこのような AT_2 受容体を介した血管弛緩機構に eNOS のリン酸化を経由した BK/NO/cGMP 系の 関与があることを述べてきた、このことは、RA 系 に起因する高血圧では、 AT_1 受容体の活性化に伴

Fig. 11. Effects of Receptor Antagonists and Protein Kinase Inhibitors on Ang II-Induced Contractile Response of Aortic Rings

The cumulative concentration-response curves for Ang II was constructed 30 mins after treatment with or without PD123319 (PD: 1 μ mol/l), icatibant (Icat: 1 μ mol/l), wortmannin (Wort: 1 μ mol/l), LY24002 (LY: 10 μ mol/l), H89 (10 μ mol/l) or KT5720 (KT: 10 μ mol/l) in aortic rings prepared from mice 4 days after sham-operation or banding. The results are expressed as the percentage of contraction evoked by 40 mmol/l KCl. Effects of PD and Icat: (A), Wort and LY: (B), and H89 and KT: (C), on the response to Ang II were determined in rings from banded mice. Values are mean ±S.E., *n*=8 for each point. A: **p*<0.01 versus sham rings with or without Wort or LY, C: **p*<0.01 versus shanding rings with H89 or KT. Data are from Ref. 23).

Ang II binds to AT₂ receptors in the plasma membrane. The activation of AT₂ receptors stimulates the bradykinin (BK) B₂ receptor (B₂), which stimulates serine phosphorylation of eNOS at Ser⁶³³ and Ser¹¹⁷⁷ by a protein kinase A (PKA)-dependent pathway. Phosphorylation of eNOS increases NO production, activating soluble guanylyl cyclase (sGC), which converts GTP to cGMP. cGMP mediates vasodilation.

う AT₂ 受容体発現亢進により, Ang II 作用を血管 収縮から血管拡張へとシフトさせ, これによって代 償的に圧負荷に抵抗する機構のあることを示唆して いる.血管は高血圧という異常状態に置かれること により,様々な代償機構を発動してその過剰な負荷 を回避するような制御機能を持っており, AT₂ 受 容体もそのような代償機構の1つを担うものと思わ れる.

しかし、まだまだ未解決の多くの課題があること に気付かされる.第一の課題は血管での AT_2 受容 体の分布である.筆者らの研究は、banding等の高 血圧負荷によって血管のどの細胞が AT_2 受容体を 発現するかについて明らかにしてない.血管での AT_2 受容体は、血管内皮細胞に多く分布するが平 滑筋細胞にも局在すると報告されている.^{3,27)} AT_1 受容体も両細胞に分布していることから、 AT_1 受 容体刺激に応答した AT_2 受容体遺伝子発現調節 と、本稿で示した AT_2 受容体による血管弛緩機構 の詳細を明らかにするには、 AT_2 受容体の分布は 重要な情報である.この点を明らかにするには、 AT_2 受容体検出系に必要な特異性の高い抗体が必 要であろう.もう1つの残された大きな課題は、 AT, 受容体刺激がどのような機構によって B, 受容 体活性化につながるのかである. 先に引用した Tsutsumi らの研究は、血管平滑筋細胞の AT2 受容 体刺激が Na+/H+ 交換系を抑制してアシドーシス とし、それによってカリクレインを活性化して BK が遊離されると報告している.の実際、腎臓での AT₂ 受容体刺激が腎臓間質液中の BK 濃度を増加さ せることから,恐らくは血管内皮あるいは平滑筋細 胞においても組織プロカリクレインがカリクレイン へと活性化され、血管組織内局所において BK を遊 離する可能性が大きい.^{7,28)}これに関連して、AT₂ 受容体と B2 受容体のヘテロ 2 量体形成による直接 的なシグナル伝達の可能性も考えられる.29)しかし. B2 受容体遮断薬は、この2 量体形成を抑制しない ことから、29) この機構は考え難い. この課題を明ら かにするため、筆者らは、AT2 受容体刺激がプロ カリクレインを活性化するかについて研究を進めて いる. また血管弛緩作用以外の AT2 受容体の機 能,特にAT₁受容体を介したAng II の細胞増殖, 細胞外マトリックス産生、活性酸素産生作用に対し て, AT2 受容体がどのように係わるかも, 今後明 らかにするべき課題として興味が持たれる.

7. おわりに

AT₁ 受容体遮断薬は,高血圧症,心不全,心肥 大,心筋梗塞,あるいは,糖尿病性腎症などの循環 器疾患治療への有用性が明らかにされており, ACE 阻害薬と同等の臓器保護効果を持っている. このような有用性の重要な根拠は,その優れた血管 内皮機能の保護効果にある.ACE 阻害薬の持つ内 皮機能への BK 効果増強作用と同様に,AT₁ 受容体 遮断薬もAT₂ 受容体の間接的な活性化によって, 内皮での BK 効果を引き出すことがその薬効を理解 する上で重要であると考えられる.高血圧症など循 環器疾患の分子機構の解明に加えて,その治療薬開 発への観点でも,今後のAT₂ 受容体の機能に関す る研究に期待が寄せられる.

謝辞 本研究は、文部科学省科学研究費基盤研究(13672315,16590074),並びに文部科学省学術フロンティア推進事業(2006-2011年度)の支援により行われたものである.

REFERENCES

- De Gasparo M., Catt K. J., Inagami T., Wright W., Unger T. H., *Pharmacol. Rev.*, 52, 415–472 (2000).
- Matsubara H., Circ. Res., 83, 1182-1191 (1998).
- Henrion D., Kubis N., Levy B. I., *Hypertension*, 38, 1150–1169 (2001).
- Benzing T., Fleming I., Blaukat A., Muller-Esterl W., Busser R., Circulation, 99, 2034– 2040 (1999).
- 5) Carey R. M., Wang Z. Q., Siragy H. M., *Hypertension*, **35**, 155–163 (2000).
- 6) Tsutsumi Y., Matsubara H., Masaki H., Kurihara H., Murasawa S., Takai S., Miyazaki M., Nozawa Y., Ozono R., Nakagawa K., Miwa T., Kawada N., Mori Y., Shibasaki Y., Tanaka Y., Fujiyama S., Koyama Y., Fujiyama A., Takahashi H., Iwasaka T., J. Clin. Invest., 104, 925–935 (1999).
- 7) Carey R. M., *Hypertension*, **45**, 840–845 (2005).
- Viswanathan M., Tsutsumi K., Correa F. M. A., Saavedra J. M., Biochem. Biophys. Res. Commun., 179, 1361–1367 (1991).
- Otsuka S., Sugano M., Makino N., Sawada S., Hata T., Niho Y., *Hypertension*, 32, 467–472 (1998).
- Touyz R. M., Endemann D., He G., Li J.-S., Schiffrin E. L., *Hypertension*, **33**, 366–372 (1999).
- Yayama K., Horii M., Hiyoshi H., Takano M., Okamoto H., Kagota S., Kunitomo M., J. *Pharmacol. Exp. Ther.*, **308**, 736–743 (2004).
- 12) Hiyoshi H., Yayama K., Takano M., Okamoto H., *Hypertension*, 43, 1258–1263 (2004).
- Hiyoshi H., Yayama K., Takano M., Okamoto H., *Hypertension*, 45, 967–973 (2005).
- 14) Paul M., Mehr P., Kreutz R., *Physiol. Rev.*, 86, 747–803 (2006).
- Ranjan V., Xiao Z., Diamond S. L., Am. J. Physiol., 269, H550–H555 (1995).
- Noris M., Morigi M., Donadelli R., Aiello S., Foppolo M., Todeschini M., Orisio S., Remuzzi G., Remuzzi A., *Circ. Res.*, 76, 536– 543 (1995).
- 17) Harris M. B., Ju H., Venema V. J., Liang H.,

- 18) Papapetropoulos A., Garcia-Cardena G., Madri J. A., Sessa W. C., J. Clin. Invest., 100, 3131-3139 (1997).
- Hisamoto K., Ohmichi M., Kurachi H., Hayakawa J., Kanda Y., Nishio Y., Adachi K., Tasaka K., Miyoshi E., Fujiwara N., Taniguchi N., Murata Y., J. Biol. Chem., 276, 3459–3467 (2001).
- Michel T., Feron O., J. Clin. Invest., 100, 2146–2152 (1997).
- Fulton D., Gratton J.-P., Sessa W. C., J. Pharmacol. Exp. Ther., 299, 818–824 (2001).
- 22) Venema R. C., Int. Immunopharmacol., 2, 1755–1762 (2002).
- 23) Yayama K., Hiyoshi H., Imazu D., Okamoto H., *Hypertension*, 48, 958–964 (2006).
- 24) Dimmerler S., Fleming I., Fisslthaler B., Her-

mann C., Busse R., Zeiher A. M., *Nature*, **399**, 601–605 (1999).

- 25) Fulton D., Gratton J.-P., McCabe T. J., Fontana J., Fujio Y., Walsh K., Franke T. F., Papapetropoulos A., Sessa W. C., *Nature*, 399, 597-601 (1999).
- 26) Bae S. W., Kim H. S., Cha Y. N., Park Y. S., Jo S. A., Jo I., *Biochem. Biophys. Res. Commun.*, **306**, 981–987 (2003).
- Watanabe T., Barker T. A., Berk B. C., *Hypertension*, 45, 1–7 (2005).
- 28) Siragy H. M., Jaffa A. A., Margolius H. S., Carey R. M., Am. J. Physiol. Reg. Int. Comp. Physiol., 271, R1090-R1095 (1996).
- 29) Abadir P. M., Periasamy A., Carey R. M., Siragy H. M., *Hypertension*, 48, 316–322 (2006).
- Carey R. M., Park J., *Hypertension*, 48, 824– 825 (2006).