-Reviews-

免疫細胞の体内動態制御に基づいた癌免疫療法の最適化

岡田直貴,*中川晋作

Optimization of Cancer Immunotherapy by Controlling Immune Cell Trafficking and Biodistribution

Naoki OKADA,* and Shinsaku NAKAGAWA

Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1–6 Yamadaoka, Suita City 565–0871, Japan

(Received May 31, 2006)

An immunosurveillance system for tumor-associated antigens (TAAs) plays an important role in the elimination of cancer cells during the initial stage. Although cancer immunotherapy targeting TAAs has progressed steadily with the development of various vaccine strategies, excellent therapeutic efficacy, as evidenced by marked tumor regression and complete response, has not been reported in a clinical setting to date. To improve the therapeutic effects of cancer immunotherapy, we are attempting to establish an innovative concept, the "cell delivery system," capable of better controlling the trafficking and biodistribution of immune cells by applying chemokine-chemokine receptor coupling, which regulates leukocytic migration and infiltration of local sites in the living body. This review introduces our approaches that employ an Arg-Gly-Asp (RGD) fiber-mutant adenovirus vector encoding the chemokine or chemokine receptor gene in cancer immunotherapy.

Key words—cell delivery system; chemokine-chemokine receptor coupling; cancer immunotherapy; adenovirus vector; tumor-infiltrating immune cell; dendritic cell

1. はじめに

腫瘍免疫学の進展によって,遺伝子変異を蓄積し た癌細胞が正常細胞とは質的・量的に異なる腫瘍関 連抗原(TAA)と呼ばれる分子を発現しており, TAAに対する免疫監視機構が初期癌細胞の排除と いう生体の恒常性維持に重要な役割を果たしている ことが明らかとされた.これに伴って,TAAを標 的とした免疫療法が次世代の癌治療戦略として世界 的に活発に研究されており,基礎研究と臨床研究の 連携によって着実な進歩を遂げている.しかしなが ら,腫瘍の完全退縮あるいは病状の寛解といった顕 著な治療効果を報告した臨床研究はほとんど認めら れないのが現状であり,この一因として,従来の癌 免疫療法研究の多くが腫瘍免疫の存在実証とその効 率的な誘導法の探索を中心に進められ,効果的な治

大阪大学大学院薬学研究科薬剤学分野(〒565-0871 吹 田市山田丘 1-6) 療を達成する上で必要な免疫エフェクター細胞の腫 瘍組織への集積性改善という側面がいまだ十分に検 討されていないことが挙げられる.つまり,癌細胞 を殺傷する能力を有する免疫エフェクター細胞が例 え患者体内に誘導されたとしても,それらが十分に 腫瘍組織に移行・浸潤して癌細胞と接触できなけれ ば,癌免疫療法の有効性は大きく制限されてしまう と考えられる.

また近年,免疫系を構成する細胞の機能解明が急 速に進んだことによって,樹状細胞(DC)がT細 胞依存性の獲得免疫応答の始動及び増幅,さらには 自然免疫応答の制御をも含めて,免疫監視機構を多 方面から統御する抗原提示細胞であることが明らか とされた.このような免疫学的特性に基づいて, TAAを導入した DCを"nature's adjuvant"として 利用する細胞免疫療法が有望な新規癌治療戦略とし て精力的に研究されており,DCの腫瘍免疫誘導能 を最大限に発揮させる方法論の探索が進められてい る.¹⁾生体に投与した TAA 導入 DC ワクチンは, 投与部位から所属リンパ組織へ移行することによっ

^{*}e-mail: okada@phs.osaka-u.ac.jp

本総説は、日本薬学会第 126 年会シンポジウム S33 で 発表したものを中心に記述したものである.

て始めて T 細胞への抗原提示・感作を行い一連の 初期免疫応答を惹起する.すなわち,患者に投与し た TAA 導入 DC ワクチンのリンパ組織集積性が, DC 免疫療法の治療効果を規定する要因の1つとし て考えられる.しかし現在の DC 免疫療法では,投 与部位からリンパ組織に移行させるための最適な DC コンディショニングについて十分な検討がなさ れていないため,投与 DC ワクチンのうちリンパ組 織に集積するものはわずか 0.1—1%程度とされて いる.²⁻⁴⁾したがって,TAA 導入 DC ワクチンに高 いリンパ組織移行能を付与することができれば,リ ンパ組織における免疫エフェクター細胞の活性化を 増強することが可能であり,ひいては DC 免疫療法 の有効性を飛躍的に改善できるものと期待される.

以上のような観点から筆者らは, 癌免疫療法の有 効性改善に貢献するアプローチとして, "Cell Delivery System"ともいうべき新たなコンセプト に基づいた免疫細胞の体内動態制御法の構築を試み ている.本稿では,ケモカインーケモカインレセプ ター連関を応用した1)免疫エフェクター細胞の腫 瘍集積性,並びに2)DCワクチンのリンパ組織集 積性,を増強し得る方法論を紹介するとともに,こ れら Cell Delivery System の癌免疫療法における有 用性について概説する. 2. ケモカイン―ケモカインレセプター連関

癌免疫療法の有効性及び安全性を確保・向上する ためには、生体内の免疫細胞あるいは細胞医薬とし て生体に投与(移入)する免疫細胞を「必要なとき に、必要な場所に、必要な量」送達できる Cell Delivery System の確立が必要とされる.しかし、 生体を構成する約 60 兆個の細胞の秩序を保った移 動・分布・配列等を制御する巧妙な仕組みに関する 知見はいまだ乏しく、Cell Delivery System の構築 へと展開できる基礎情報並びに基盤技術は限られて いる.現時点で Cell Delivery System への応用に最 も利用価値の高い生命現象は、ケモカイン-ケモカ インレセプター連関に基づいた免疫細胞の局所への 遊走・浸潤制御機構であろう.

ケモカインは 8-14 kDa 程度の塩基性・ヘパリン結合性分泌タンパク群であり、種々の細胞接着分子と協調して炎症反応やリンパ球のホーミングを制御している(Fig. 1).⁵⁾現在、ヒトでは約50種類のケモカインが同定されており、それらは保存された4つのシステイン残基のうちN末端の2個のシステインの位置からCケモカイン、CCCケモカイン、及びCX₃Cケモカインの4つのサブグループに分類されるスーパーファミリーを形成している.⁶⁾また、すべてのケモカインは7回膜貫通Gタンパク質共役型レセプターを介して作用

Fig. 1. Schematic Representation of Chemokine Functions in Tissue Infiltration of Lymphocyte

し、同定されている約 20 種類のケモカインレセプ ターもスーパーファミリーを構築している.^{7,8)} ケモ カインは当初、好中球や単球を遊走させるサイトカ インの一群として発見され、主に炎症での役割が研 究されてきた.これら炎症性ケモカインに対して、 1990 年代後半より、バイオインフォマティクスを 駆使して EST データベースを検索するという手法 によって新しいケモカインが次々と発見され、リン パ球や DC などを標的細胞とする免疫系ケモカイン の存在が明らかとなった(Table 1).これによっ て、免疫細胞の生体内での移動や局在の制御機構に 関する理解が急速に進展するとともに、ケモカイン ーケモカインレセプター連関を応用することによっ て免疫細胞の体内動態・体内分布を制御し得る新た な癌免疫療法の開発に足掛かりができた.

3. RGD ファイバーミュータントアデノウイル ス (AdRGD) ベクター

ケモカイン-ケモカインレセプター連関を利用し た Cell Delivery System を実現するためには、生体 内局所あるいは生体に投与する細胞医薬にケモカイ ンやケモカインレセプターを豊富かつ持続的に発現 させる必要があり、遺伝子導入技術はそれらを満足 する有力な手段である.アデノウイルス(Ad)ベ クターは、現存する遺伝子導入ベクターの中で最も 高い遺伝子導入効率を誇り、かつ高力価のベクター 調製が容易であることから *in vivo* 直接投与への応

Immune cell subset	Chemokine receptor expression	Corresponding chemokines	Immune cell subset	Chemokine receptor expression	Corresponding chemokines
Naive T cell	CCR7	CCL19, 21	NK cell	CCR1	CCL3, 5, 7
	CXCR4	CXCL12		CCR2	CCL2, 7, 13
Th1	CCR2	CCL2, 7, 13		CCR4	CCL17, 22
	CCR5	CCL3, 4, 5		CCR5	CCL3, 4, 5
	CXCR3	CXCL9, 10, 11		CCR7	CCL19, 21
	CXCR6	CXCL16		CCR8	CCL1
	CX ₃ CR1	CX ₃ CL1		CXCR1	CXCL6, 8
Th2	CCR2	CCL2, 7, 13		CXCR2	CXCL1, 2, 3, 5, 6, 7, 8
	CCR3	CCL5, 7, 8, 11, 13, 24, 26		CXCR3	CXCL9, 10, 11
	CCR4	CCL17, 22		CXCR4	CXCL12
	CCR8	CCL1		CXCR6	CXCL16
CTL	CCR5	CCL3, 4, 5		XCR1	XCL1
	CXCR1	CXCL6, 8		CX ₃ CR1	CX ₃ CL1
	CXCR2	CXCL1, 2, 3, 5, 6, 7, 8	Monocyte	CCR1	CCL3, 5, 7
	CXCR3	CXCL9, 10, 11		CCR2	CCL2, 7, 13
	CXCR6	CXCL16		CCR5	CCL3, 4, 5
	CX ₃ CR1	CX ₃ CL1		CCR8	CCL1
Memory T cell	CCR1	CCL3, 5, 7		CXCR2	CXCL1, 2, 3, 5, 6, 7, 8
	CCR2	CCL2, 7, 13		CXCR4	CXCL12
	CCR4	CCL17, 22		CX ₃ CR1	CX ₃ CL1
	CCR6	CCL20	Immature DC	CCR1	CCL3, 5, 7
	CCR7	CCL19, 21		CCR2	CCL2, 7, 13
	CCR10	CCL27		CCR3	CCL5, 7, 8, 11, 13, 24, 26
	CXCR1	CXCL6, 8		CCR5	CCL3, 4, 5
	CXCR2	CXCL1, 2, 3, 5, 6, 7, 8		CCR6	CCL20
	CXCR4	CXCL12		CCR9	CCL25
B cell	CCR6	CCL20		CXCR4	CXCL12
	CCR7	CCL19, 21	Mature DC	CCR7	CCL19, 21
	CXCR3	CXCL9, 10, 11		CCR9	CCL25
	CXCR4	CXCL12		CXCR4	CXCL12
	CXCR5	CXCL15			

Table 1. Chemokine-Chemokine Receptor Coupling in Immune Cell Trafficking

用も図り易いという利点を有している.しかし. Ad ベクターが標的細胞内に侵入するには、ファー ストステップとして細胞表面上の感染受容体 (coxsackievirus-adenovirus receptor; CAR) に結合する 必要があり、9,10) 一部の癌細胞、血球系細胞及び幹 細胞においては CAR の発現が乏しいあるいは欠損 しているために、Ad ベクター介在性遺伝子導入に 抵抗性を示すことが知られている。この問題点を克 服した次世代型ベクターシステムの1つが AdRGD ベクターであり、 α_v-integrin に親和性を有する RGD (Arg-Gly-Asp) 配列を Ad ベクターのカプシ ドタンパク質(ファイバー領域)に表現させること によって感染域の拡大を図り. CAR 低発現の細 胞・組織にも極めて効率よく遺伝子導入することが 可能となった (Fig. 2).¹¹⁾ 実際に, CAR 低発現の マウス B16BL6 メラノーマ細胞並びにマウス骨髄 由来 DC への AdRGD ベクターによる遺伝子導入 効率を従来型 Ad と比較してみると、Fig. 3 に示す ように従来型 Ad ベクターでは両細胞への遺伝子導 入効率は20%にも満たないレベルであったのに対 して、AdRGD ベクターでは 90%以上もの効率で 外来遺伝子を発現させることができた.12-14)そこ で、種々のケモカイン遺伝子あるいはケモカインレ セプター遺伝子の発現力セットを搭載した AdRGD ベクターを構築し、これらを用いた免疫細胞の体内 動態制御法の確立と癌免疫療法への応用を試みた.

4. 免疫エフェクター細胞の腫瘍集積性の増強

免疫細胞の腫瘍組織内浸潤率と癌患者の予後を調 査した結果から、

原発腫瘍に多くの免疫細胞が集積 している症例では、治療後の再発あるいは転移が高 率に抑制されるという相関が報告されており,15-17) 免疫系による腫瘍細胞認識を促進させる方法論の開 発が癌の治癒率の向上にいかに重要であるかをうか がわせる.また、T細胞、特に細胞傷害性T細胞 (CTL)、が腫瘍免疫における最も強力なエフェク ター細胞であると広く考えられており,¹⁸⁻²⁰⁾これ までの癌免疫療法研究によって腫瘍特異的 CTL を 効率よく誘導できる様々なワクチン戦略が提案され ている.しかし、腫瘍細胞のケモカイン産生レベル は正常細胞よりも低いことや,21) 腫瘍組織に新生さ れた血管内皮細胞には接着分子がほとんど発現して いない22)などの理由から、 癌免疫療法によって活性 化された免疫エフェクター細胞は一般的に腫瘍組織 内に十分に集積することができない、したがって、 免疫細胞の局所への遊走・浸潤を制御するケモカイ ンを利用することによって腫瘍組織内への免疫細胞 の集積を増強しようとする試みは、効果的な癌免疫 療法の開発において非常に魅力的な手段であると言

Fig. 2. Construct and Tropism of RGD Fiber-mutant Adenovirus (AdRGD) Vector ITR: inverted terminal repeat, Prom: promoter, P(A): polyadenylation signal, CAR: coxsackievirus-adenovirus receptor.

B16BL6	Non treatment	Ad-EGFP		AdRGD-EGFP	
	Non-treatment	10 MOI 50 MOI		10 MOI	50 MOI
	0.1%	3.2%	17.5%	99.4%	99.8%
	-				
	Non treatment	Ad-E	GFP	AdRGD)-EGFP
	Non-treatment	Ad-E 25 MOI	GFP 50 MOI	AdRGD	D-EGFP 50 MOI

Fig. 3. EGFP Expression in Murine B16BL6 Cells and DCs Transduced with EGFP cDNA by AdRGD or Conventional Ad Vector B16BL6 cells and DCs were transfected for 2 h with Ad-EGFP or AdRGD-EGFP at the indicated MOI (multiplicity of infection). Two days later, EGFP expression in cells was evaluated by flow cytometric analysis. The % value expresses the percentage of EGFP-positive cells.

Fig. 4. Conceptual Representation of *In vivo* Chemokine Gene Transduction to Manipulate Immune Cell Trafficking and Biodistribution in Cancer Immunotherapy

えよう(Fig. 4). そこで筆者らは,目的遺伝子の 搭載が簡便であるとともに,広範な種類の腫瘍細胞 に対して非常に効率よく遺伝子導入することができ る AdRGD ベクターを駆使することによって,種 々の免疫系ケモカインを発現させた腫瘍の免疫細胞 浸潤度と治療効果との連関を網羅的に解析し た.²³⁻²⁷⁾ それらの中から本稿では,マウス B16BL6 腫瘍モデルにおいて CCL17 及び CCL19 を発現す る AdRGD ベクター (AdRGD-CCL17, AdRGD-CCL19) を用いた検討結果について紹介する.

まず,マウスの腹部皮内に生着させた B16BL6 腫瘍に AdRGD-CCL17 あるいは AdRGD-CCL19 を投与し,2日後における免疫細胞の腫瘍実質内浸 潤度を免疫組織染色により解析したところ(Fig.5 (A))、AdRGD-CCL19 投与腫瘍においては、コン トロールベクター(ルシフェラーゼ発現 AdRGD ベクター; AdRGD-Luc) を投与した腫瘍と比較し て CD3+ T 細胞の著しい浸潤増加が観察された. また、これらT細胞のサブセット解析の結果から、 AdRGD-CCL19 の投与によって腫瘍内には CD4+ ヘルパーT細胞とCD8+ CTL がともに集積してい ることも判明した. 一方, AdRGD-CCL17 を投与 した腫瘍ではコントロール群と比較して有意な T 細胞数の増加を認めなかった。このように腫瘍組織 への T 細胞動員能が大きく異なる CCL17 と CCL19 ではあるが, Fig. 5(B) に示すように AdRGD-CCL17 あるいは AdRGD-CCL19 の投与は B16BL6 腫瘍の増殖をコントロール群と比較してわずかに遅 延させたのみであり、ケモカイン両群間の抗腫瘍効 果に明らかな差は認められなかった. 筆者らはこの 一見矛盾する結果に対して、腫瘍組織に発現させた CCL19によって動員される T細胞が腫瘍細胞を排 除する活性に乏しい未感作(naive)な状態であっ たために、効果的な腫瘍退縮が観察されなかったの ではないかと考えた。事実、CCL19に対応するケ

モカインレセプターである CCR7 は、T 細胞サブ

セットの中でも主に naive T 細胞に発現することが 知られており (Table 1),また活性化 T 細胞の細胞 傷害分子の1つであるパーフォリンに対する免疫組 織染色において,CCL19 により腫瘍内に動員され た T 細胞の大半がパーフォリン陰性であることを 確認している.したがって,ケモカイン遺伝子の腫 瘍内導入に基づいた免疫細胞の腫瘍内浸潤増強 (Cell Delivery System)を癌免疫療法の開発に活か すためには,免疫細胞を腫瘍特異的に活性化し得る ワクチン戦略との併用によってこそ真価が発揮され るであろうと考えられた.

そこで, B16BL6 腫瘍の TAA の1つである gp100の遺伝子を導入した DC ワクチン (gp100/ DC)を免疫投与することによって,gp100 特異的 CTL が感作・活性化された状態の担癌マウスを作 成し,その後ケモカイン発現 AdRGD ベクターを 腫瘍内投与した際の治療効果とそのメカニズムを解 析した.Figure 6(A) に示すように,B16BL6 腫瘍 を接種したマウスにgp100/DC を皮内投与し,そ の後 PBS あるいはコントロールベクターを腫瘍内 投与した群では効果的な腫瘍退縮は認められず,こ の結果はひとたび増殖を始めた B16BL6 腫瘍を

Fig. 5. T Cell Infiltration (A) and Growth Suppression (B) in B16BL6 Tumors Injected with AdRGD-CCL17 or AdRGD-CCL19 B16BL6 cells were intradermally inoculated into the right flank of C57BL/6 mice at 4×10⁵ cells/mouse. One week later, tumors (5–7 mm in diameter) were injected with AdRGD-CCL17, AdRGD-CCL19, or AdRGD-Luc (control vector) at 3×10⁸ PFU (plaque-forming unit). PBS was administered to control tumors. (A): On day 2 after intratumoral injection, immunohistochemical staining against CD3 (pan-T marker), CD4 (helper T marker), and CD8 (CTL marker) was performed using frozen tumor sections. Then, the number of positive cells in tumor parenchyma was assessed by counting six fields per specimen under ×400 magnification. (B): The tumor sizes were assessed using microcalipers, and the tumor volume was calculated using the following formula: (tumor volume [mm³]) = (major axis [mm])×(minor axis [mm])²×0.5236.

Fig. 6. Growth Suppression (A) and T Cell Infiltration (B) in B16BL6 Tumors of Mice Treated with the Combination of gp100/DCimmunization and Intratumoral Injection of Chemokine-expressing AdRGD Vector

B16BL6 cells were intradermally inoculated into the right flank of C57BL/6 mice at 4×10^5 cells/mouse. One day later, the mice were intradermally immunized in the left flank with 10⁶ DCs transduced with AdRGD-gp100 at 25 MOI. Then, the tumors (5–7 mm in diameter) were injected with AdRGD-CCL17, AdRGD-CCL19, or AdRGD-Luc (control vector) at 3×10^8 PFU. PBS was administered to control tumors of mice immunized with gp100/DCs or PBS. (A): The tumor volume was assessed as described in the legend to Fig. 5. (B): In mice immunized with gp100/DCs, immunohistochemical staining against CD3 to determine T cells was performed with frozen tumor sections on day 2 after intratumoral injection with each AdRGD vector or PBS. The number of CD3-positive cells in tumor parenchyma was assessed by counting six fields per specimen under \times 400 magnification.

gp100/DCの単回免疫投与だけで抑制することは非 常に困難であることを示している、これに対して、 gp100/DC 免疫後に AdRGD-CCL17 を腫瘍内投与 した場合には、極めて強力な腫瘍増殖抑制効果が観 察され、AdRGD-CCL17 投与2日後における腫瘍 組織にはコントロール群と比較して顕著な CD3+T 細胞の浸潤増加が検出された(Fig. 6(B)).一方, gp100/DC を免疫投与した担癌マウスに AdRGD-CCL19を腫瘍内投与した場合には、腫瘍増殖のわ ずかな遅延が観察されたのみであり、腫瘍浸潤 T 細胞数もコントロール群と比較して若干の増加を認 めるのみであった. これらの結果は、Fig.5 に示し たケモカイン発現 AdRGD ベクターの腫瘍内投与 だけを施した際の抗腫瘍効果及び腫瘍浸潤 T 細胞 数の結果とは全く異なる傾向を示し、免疫細胞のケ モカイン応答性(ケモカインレセプターの発現パ ターン)が自身の分化・活性化とともに変化するこ とを考え合わせると、有効な治療プロトコールを確 立するためには腫瘍内に発現させるケモカインの種 類を併用する癌免疫療法の特性(宿主免疫細胞の活 性化状態)を考慮して選択する必要があることを示 唆している. また、ケモカイン遺伝子を導入した腫

瘍内へ集積する免疫細胞のサブセット並びに細胞数 を、これまでに報告されている in vitro 解析に基づ いた特定のケモカインと標的細胞との対応関係から 予測することは極めて困難であり、これらは、発現 したケモカインの作用・腫瘍組織の環境要因・集積 した免疫細胞による二次的な作用・宿主免疫系の活 性化状態などを包含した複合的イベントとして決定 されると考えられた.したがって、ケモカインを応 用した有効な癌免疫療法を開発するためには、腫瘍 組織内への免疫細胞の集積性増強ばかりでなく、腫 瘍局所に集積した免疫細胞を腫瘍特異的に活性化す るためのサイトカイン療法や細胞療法の併用をも視 野に入れた取り組みが必要であろうと思われる.

以上に紹介した筆者らの研究成果は、ケモカイン を利用した腫瘍浸潤免疫細胞の増強(Cell Delivery System)が癌免疫療法の有効性改善に大いに貢献 できるアプローチであることを実証するものであ り、今後、免疫系におけるケモカイン―ケモカイン レセプター連関のより詳細な解明に伴って、免疫エ フェクター細胞の緻密な体内動態制御を導入した有 効かつ安全な癌免疫療法の開発に結びついていくも のと期待している.

5. DC ワクチンのリンパ組織集積性の増強

骨髄幹細胞に由来する DC は生体内に広く分布し ており、外来性の病原体や内在性の変異細胞(癌細 胞・ウイルス感染細胞) 断片を捕食すると、それら に含まれるタンパク抗原をペプチドにまでプロセッ シングして細胞表面の主要組織適合遺伝子複合体 (MHC)分子上に提示する. さらに、輸入リンパ 管を介して最寄りのリンパ組織へと遊走し、リンパ 組織に存在する T 細胞を抗原特異的に感作・活性 化することにより病原体や変異細胞の排除に働く CTL を増幅する.^{28,29)} DC をワクチン担体として利 用する癌免疫療法は、患者から単離した DC 前駆細 胞を in vitro 培養系において DC へと増殖・分化さ せ、TAA 導入処理を施した DC を患者に投与する ことによって、DC が誘発する一連の免疫応答の活 性化に基づいた癌治療を達成しようとするものであ る (Fig. 7). 本療法の一部のプロトコールについ ては既に臨床試験も開始されているが、残念ながら 劇的な有効性は報告されておらず,現在, DC ワク チンの免疫誘導能を最大限に発揮させる調製法の探 索が筆者らを含めて多くの研究グループによって進 められている.³⁰⁻³⁵⁾前述の通り AdRGD ベクター は、DCに対しても他のベクターシステムと比較し て圧倒的に優れる遺伝子導入効率を有することか ら、筆者らは、AdRGD ベクターを応用して TAA

遺伝子を効率よく導入した DC ワクチンの創製が、 これまで DC に対する低い TAA 導入効率によって 制限されていた DC 癌免疫療法の有効性を飛躍的に 改善できることを報告してきた.^{12,32,33)}また、 AdRGD ベクターは DC への抗原遺伝子デリバリー のみならず、従来の遺伝子導入法では困難とされて きた種々の機能修飾を目的とする遺伝子改変 DC ワ クチンの創製をも可能とする.³⁴⁾したがって、 AdRGD ベクターを用いた DC への効率的な遺伝子 導入は、臨床的に最適な DC ワクチンを設計・開発 するためのブレークスルー的な手法になり得ると期 待される。このコンセプトに基づいて筆者らは、ケ モカインレセプター遺伝子を搭載した AdRGD ベ クターを応用することにより、生体に投与する DC ワクチンの体内動態を操作し、より効果的な DC 癌 免疫療法の開発へと発展させるという独自のアイデ アを実践している.³⁶⁾ その一例として、CC ケモカ インレセプター7(CCR7)遺伝子を導入すること でリンパ組織移行性を増強した DC ワクチンの創製 とその癌免疫療法における有用性を紹介する.

生体内に存在する DC の末梢組織からリンパ組織 への遊走は、抗原認識・捕捉や炎症反応に伴って成 熟分化した DC に CCR7 が一過性に発現し、リン パ組織から構成的に産生・分泌されている CCL21 に応答することによって誘発されるというコンセン

Fig. 7. Schematic Representation of DC-based Cancer Immunotherapy

サスが得られている.^{37,38)}したがって、抗原導入と ともに CCR7 を十分に発現させた DC ワクチン は、生体に投与したあとに積極的にリンパ組織へと 移行して免疫系を効率よく活性化できることが強く 予測され、この"リンパ組織指向性 DC"ともいう べき新たなワクチンの創製手段として DC への CCR7 遺伝子導入が挙げられる (Fig. 8). そこでま ず、CCR7 遺伝子搭載 AdRGD ベクター (AdRGD-CCR7) を用いて遺伝子導入した DC (CCR7/DC) における CCR7 発現レベルを flow cytometry によ り解析したところ、90%以上の DC で細胞表面に豊 富な CCR7 タンパク発現が確認された(Fig.9 (A)). また. *in vitro* chemotaxis assay において CCR7/DC は CCL21 の濃度に依存した遊走活性の 上昇を示したことから、遺伝子導入によって細胞膜 上に強制発現させた CCR7 タンパクは、CCL21 濃 度を感知して DC に遊走刺激を伝える本来の生物活 性を保持したケモカインレセプターであることも判 明した (Fig. 9(B)). さらに, CCR7/DC をマウス の側腹部皮内に投与し、48時間後に投与部位から 所属リンパ節(鼠径部リンパ節)へと遊走した DC 数を解析したところ、コントロール DC と比較して 5-15 倍高いリンパ節への集積が認められた(Fig.

9(C)). これらの結果は, AdRGD ベクターを応用 した DC へのケモカインレセプター遺伝子の導入に よって, DC のケモカイン応答性並びに生体に投与 した際の体内挙動を改変できることを示すとともに, CCR7/DC が, DC 免疫療法における効率のよい免 疫エフェクター細胞の活性化と全身への迅速なエフ ェクター細胞の供給という観点から,非常に優れた ワクチン担体として機能することを示唆するもので ある.

そこで、CCR7/DCの優れたリンパ組織集積性と DC免疫療法の有効性改善との関連性を検証するた めに、メラノーマ関連抗原(gp100)遺伝子と CCR7遺伝子とを共導入したDC(gp100+CCR7/ DC)を調製し、マウスB16BL6メラノーマモデル におけるワクチン機能を解析した(Fig. 10(A)). Mock DC あるいは CCR7/DCを投与した群と比較 して、gp100遺伝子のみを導入したDC(gp100/ DC)をワクチン投与したマウスにおいては攻撃接 種したB16BL6 腫瘍の顕著な増殖遅延が観察さ れ、さらにgp100+CCR7/DCを免疫した群におい てはより強力な腫瘍増殖抑制効果が認められた.ま た、これらの遺伝子導入DCワクチンを投与したマ ウスにおける CTL 活性を比較したところ、gp100

Fig. 8. Conceptual Representation of "Lymphoid Tissue-directivity DC" Vaccine Created by CCR7 Gene-transduction The migration of DCs from administration site to regional lymph nodes is critical for the priming of T cells in DC-based immunotherapy. However, the poor migratory ability of antigen-delivered DCs limits the induction of a potent immune response. On the other hand, DCs transduced efficiently with the CCR7 gene may adequately respond to CCL21, which is constitutively released from lymphoid tissue, and acquire migratory ability to lymph nodes. Consequently, antigen-delivered DCs with CCR7 transduction can enhance the initiation and amplification of the T cell-dependent immune response.

Fig. 9. Analysis for CCR7 Expression Levels (A), In vitro Chemotaxis (B), and In vivo Migration (C) of CCR7/DCs

DCs were transduced with AdRGD-CCR7 or AdRGD-Luc at 50 MOI. These transduced cells (CCR7/DC and Luc/DC), LPS/DCs stimulated with 1 μ g/ml lipopolysaccharide, and mock DCs were cultured for 24 h. (A): Flow cytometric analysis was performed by using anti-mouse CCR7 antibody. Negative control (dotted line) represents mock DCs stained by second antibody alone. The % value and the numerical value indicated in the upper part of each panel express % of gated cells and mean fluorescence intensity (MFI), respectively. (B): *In vitro* chemotaxis assay was performed by a Chemotaxicell-24 installed on 24-well culture plate. CCL21 solution was added in the lower compartment at the indicated concentration, and DCs were placed in the upper chamber at 10⁶ cells. After 4 h-incubation, the number of cells that migrated to the lower compartment was counted. The chemotactic activity was expressed in terms of the percentage of the input cells calculated by the following formula: (% of input cells) = (the number of migrated cells) / (the number of cells placed in Chemotaxicell-24 [10⁶ cells]) ×100. (C): DCs derived from EGFP-transgenic mice were transduced with AdRGD-CCR7 or AdRGD-Luc at 50 MOI, and then were intradermally injected into the left flank of C57BL/6 mice at 2 ×10⁶ cells/50 μ l. Two days later, the draining inguinal lymph nodes were collected from these mice, and a single cell supension was prepared. The abundance of EGFP-positive DCs was assessed by flow cytometric analysis acquiring 500000 events. The number of DCs that had migrated into draining lymph nodes was calculated by multiplying the EGFP-positive DC-frequency by the total number of isolated lymph node cells.

+ CCR7/DC を投与したマウスの脾細胞中には gp100/DC 投与群を上回る B16BL6 特異的細胞傷害 活性が検出された (Fig. 10(B)). これらの結果は, CCR7-CCL21 連関を利用した DC ワクチンへの積 極的なリンパ組織移行能の付与 (Cell Delivery System)が,細胞医薬としての DC ワクチンの生物学 的利用能を向上させることを意味しており, DC 免 疫療法の臨床応用実現に貢献する有益な基礎情報を 提供できるものと考えている.

Fig. 10. Anti-B16BL6 Tumor Efficacy (A) and CTL Activity (B) in Mice Immunized with DCs Cotransduced with CCR7 and gp100 Gene by AdRGD

CCR7/DCs, gp100/DCs, and gp100+CCR7/DCs were prepared using corresponding AdRGD vectors at 25 MOI, and then cultured for 24 h. C57BL/6 mice were immunized by intradermal injection of 5×10^5 transduced DCs or mock DCs into the left flank. (A): One week later, 4×10^5 B16BL6 cells were inoculated into the right flank of the mice, and then the tumor volume was assessed as described in the legend to Fig. 5. (B): At 1 week after immunization, non-adherent splenocytes were prepared from these mice, and then were re-stimulated *in vitro* for 5 days with IFN- γ -stimulated and mitomycin C-inactivated B16BL6 cells. A cytolytic assay using the re-stimulated splenocytes (effector cells) was performed against IFN- γ -stimulated B16BL6 (closed column) or EL4 cells (open column) at effector/ target ratio at 25. N.D.: not detectable.

6. おわりに

近年の免疫学及び分子生物学の著しい進展に伴 い、免疫系を構築する細胞や分子の情報ネットワー クが詳細に解明されつつあり、さらに DC や CTL など免疫機能細胞を医薬品として捉えた細胞療法の 研究が精力的に推し進められている。しかし、これ ら細胞医薬自身の体内動態制御あるいは細胞医薬に より活性化された免疫細胞の体内動態制御によって 治療効果の改善を目指した研究は、いまだ緒に就い たばかりであり、癌免疫療法へと展開するために必 要とされる基礎的な情報さえ不足しているのが現状 である.筆者らは、本稿で紹介したケモカイン―ケ モカインレセプター連関を利用した Cell Delivery System のみならず,アポトーシス抑制機構を利用 した細胞医薬の生体内安定性(生存性)の向上、抗 原一抗体反応を利用した細胞医薬への標的指向性の 付与. といった様々な Cell Delivery System の開発 を試みており、これらが免疫療法に留まらず、細胞 機能によって疾病治療を達成しようとする次世代医 療(再生療法, ex vivo 遺伝子治療など)の現在の 治療限界を切り崩す有望な方法論となるものと考え ている(Fig. 11). これら次世代医療の臨床応用に 向けてはまだまだ長い道のりが待っており、治療法 の理論的根拠,有効性・安全性の評価基準,遺伝子 医薬や細胞医薬の性能・品質管理など,従来の低分 子有機化合物を用いた薬物治療がなし遂げてきたよ うな厳しい基準をクリアしていくことが要求され る.現在はこれら多岐に渡る検討課題を個々に克服 している段階であるが,筆者らの Cell Delivery System がより確かな次世代医療を実現するための 一助となることを期待する.

謝辞 本研究の遂行に有益な御助言及び多大な 御支援を賜りました水口裕之先生(医薬基盤研究所 基盤研究部遺伝子導入制御プロジェクトプロジェク トリーダー,大阪大学大学院薬学研究科招聘助教 授),山本 昌先生(京都薬科大学薬剤学教室教 授),並びに藤田卓也先生(京都薬科大学薬剤学教 室助教授)を始めとする共同研究者の先生方,及び 実験に御協力頂きました大学院生・学生諸氏に厚く 御礼申し上げます.なお本研究の一部は,文部科学 省科学研究費補助金,厚生労働省科学研究費補助 金,創薬等ヒューマンサイエンス総合研究事業,薬 学研究奨励財団研究助成金,佐川がん研究助成振興 財団研究助成,千里ライフサイエンス振興財団奨励 研究助成の援助の下に行われたことを記して感謝申

Fig. 11. Conceptual Illustration of Cell Delivery System in Next Generation Medical Treatment

し上げます.

REFERENCES

- Esche C., Shurin M. R., Lotze M. T., Curr. Opin. Mol. Ther., 1, 72–81 (1999).
- Kupiec-Weglinski J. W., Austyn J. M., Morris P. J., J. Exp. Med., 167, 632–645 (1988).
- Lappin M. B., Weiss J. M., Delattre V., Mai B., Dittmar H., Maier C., Manke K., Grabbe S., Martin S., Simon J. C., *Immunology*, 98, 181–188 (1999).
- Martin-Fontecha A., Sebastiani S., Hopken U. E., Uguccioni M., Lipp M., Lanzavecchia A., Sallusto F., J. Exp. Med., 198, 615–621 (2003).
- Yoshie O., Imai T., Nomiyama H., Adv. Immunol., 78, 57–110 (2001).
- Zlotnik A., Yoshie O., *Immunity*, **12**, 121–127 (2000).
- 7) Bokoch G. M., *Blood*, **86**, 1649–1660 (1995).
- Murphy P. M., Annu. Rev. Immunol., 12, 593 -633 (1994).
- Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W., Science, 275, 1320–1323 (1997).
- Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R., *Cell*, 73, 309–319 (1993).

- 11) Mizuguchi H., Kay M. A., *Hum. Gene Ther.*, 10, 2013–2017 (1999).
- 12) Okada N., Tsukada Y., Nakagawa S., Mizuguchi H., Mori K., Saito T., Fujita T., Yamamoto A., Hayakawa T., Mayumi T., Biochem. Biophys. Res. Commun., 282, 173– 179 (2001).
- Okada N., Masunaga Y., Okada Y., Iiyama S., Mori N., Tsuda T., Matsubara A., Mizuguchi H., Hayakawa T., Fujita T., Yamamoto A., *Cancer Gene Ther.*, 10, 421–431 (2003).
- 14) Okada Y., Okada N., Nakagawa S., Mizuguchi H., Takahashi K., Mizuno N., Fujita T., Yamamoto A., Hayakawa T., Mayumi T., Jpn. J. Cancer Res., 93, 436–444 (2002).
- Eerola A. K., Soini Y., Paakko P., Clin. Cancer Res., 6, 1875–1881 (2000).
- 16) Yin X. Y., Lu M. D., Lai Y. R., Liang L. J., Huang J. F., *Hepatogastroenterology*, 50, 1281–1284 (2003).
- Fukunaga A., Miyamoto M., Cho Y., Murakami S., Kawarada Y., Oshikiri T., Kato K., Kurokawa T., Suzuoki M., Nakakubo Y., Hiraoka K., Itoh T., Morikawa T., Okushiba S., Kondo S., Katoh H., *Pancreas*, 28, e26– e31 (2004).
- 18) Naito Y., Saito K., Shiiba K., Ohuchi A.,

Saigenji K., Nagura H., Ohtani H., Cancer Res., 58, 3491-3494 (1998).

- 19) Shankaran V., Ikeda H., Bruce A. T., White J. M., Swanson P. E., Old L. J., Schreiber R. D., *Nature*, 410, 1107–1111 (2001).
- Zhang L., Conejo-Garcia J. R., Katsaros D., Gimotty P. A., Massobrio M., Regnani G., Makrigiannakis A., Gray H., Schlienger K., Liebman M. N., Rubin S. C., Coukos G., N. Engl. J. Med., 348, 203–213 (2003).
- Paillard F., Hum. Gene Ther., 10, 695–696 (1999).
- Dvorak H. F., N. Engl. J. Med., 315, 1650– 1659 (1986).
- 23) Gao J.-Q., Tsuda Y., Katayama K., Nakayama T., Hatanaka Y., Tani Y., Mizuguchi H., Hayakawa T., Yoshie O., Tsutsumi Y., Mayumi T., Nakagawa S., *Cancer Res.*, 63, 4420–4425 (2003).
- Okada N., Gao J., Sasaki A., Niwa M., Okada Y., Nakayama T., Yoshie O., Mizuguchi H., Hayakawa T., Fujita T., Yamamoto A., Tsutsumi Y., Mayumi T., Nakagawa S., Biochem. Biophys. Res. Commun., 317, 68-76 (2004).
- 25) Gao J.-Q., Alexandre L. S., Tsuda Y., Katayama K., Eto Y., Sekiguchi F., Mizuguchi H., Hayakawa T., Nakayama T., Yoshie O., Tsutsumi Y., Mayumi T., Nakagawa S., *Pharmazie*, **59**, 238–239 (2004).
- 26) Gao J.-Q., Sugita T., Kanagawa N., Iida K., Okada N., Mizuguchi H., Nakayama T., Hayakawa T., Yoshie O., Tsutsumi Y., Mayumi T., Nakagawa S., *Biol. Pharm. Bull.*, 28, 1066–1070 (2005).
- 27) Okada N., Sasaki A., Niwa M., Okada Y., Hatanaka Y., Tani Y., Mizuguchi H., Nakagawa S., Fujita T., Yamamoto A., *Cancer Gene Ther.*, **13**, 393–405 (2006).
- Banchereau J., Steinman R. M., Nature, 392, 245–252 (1998).

- 29) Mellman I., Steinman R. M., Cell, 106, 255–258 (2001).
- 30) Okada N., Saito T., Mori K., Masunaga Y., Fujii Y., Fujita J., Fujimoto K., Nakanishi T., Tanaka K., Nakagawa S., Mayumi T., Fujita T., Yamamoto A., *Biochim. Biophys. Acta*, 1527, 97-101 (2001).
- 31) Okada N., Tsujino M., Hagiwara Y., Tada A., Tamura Y., Mori K., Saito T., Nakagawa S., Mayumi T., Fujita T., Yamamoto A., *Br. J. Cancer*, 84, 1564–1570 (2001).
- 32) Okada N., Saito T., Masunaga Y., Tsukada Y., Nakagawa S., Mizuguchi H., Mori K., Okada Y., Fujita T., Hayakawa T., Mayumi T., Yamamoto A., *Cancer Res.*, 61, 7913–7919 (2001).
- 33) Okada N., Masunaga Y., Okada Y., Mizuguchi H., Iiyama S., Mori N., Sasaki A., Nakagawa S., Mayumi T., Hayakawa T., Fujita T., Yamamoto A., *Gene Ther.*, 10, 1891–1902 (2003).
- 34) Okada N., Iiyama S., Okada Y., Mizuguchi H., Hayakawa T., Nakagawa S., Mayumi T., Fujita T., Yamamoto A., *Cancer Gene Ther.*, 12, 72–83 (2005).
- 35) Kawamura K., Kadowaki N., Suzuki R., Udagawa S., Kasaoka S., Utoguchi N., Kitawaki T., Sugimoto N., Okada N., Maruyama K., Uchiyama T., *J. Immunother.*, 29, 165–174 (2006).
- 36) Okada N., Mori N., Koretomo R., Okada Y., Nakayama T., Yoshie O., Mizuguchi H., Hayakawa T., Nakagawa S., Mayumi T., Fujita T., Yamamoto A., *Gene Ther.*, 12, 129 -139 (2005).
- 37) Gunn M. D., Kyuma S., Tam C., Kakiuchi T., Matsuzawa A., Williams L. T., Nakano H., J. *Exp. Med.*, 189, 451–460 (1999).
- 38) Förster R., Schubel A., Breitfeld D., Kremmer
 E., Renner-Meller I., Wolf E., Lipp M., Cell,
 99, 23–33 (1999).