-Reviews-

ウイルスベクターと非ウイルスベクターの細胞内動態の定量的解析に基づいた 遺伝子ベクター開発へのアプローチ

秋田英万,^{*,a,b} 濱 進,^{a,b} 水口裕之,^c 原島秀吉,^{a,b}

Development of Non-viral Vector Based on the Quantitative Comparison of Intracellular Trafficking with Viral Vector

Hidetaka AKITA, *a,b Susumu HAMA, a,b Hiroyuki MIZUGUCHI, c and Hideyoshi HARASHIMAa,b

^aFaculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo City 060–0812, Japan, ^bThe Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), and ^cLaboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, 7–6–8 Asagi, Saito, Ibaraki City 567–0085, Japan

(Received July 3, 2006)

For the development of efficient gene vector, intracellular processes such as cellular uptake, endosomal release and nuclear delivery must be overcome. Viruses have also evolved and have developed sophisticated mechanisms for controlling intracellular trafficking for the efficient delivery of their genomes to nuclei in host cells for symbiosis. In the light of these mechanisms, various kinds of artificial devices have been developed to overcome the intracellular barriers. However, in the majority of studies, variation of the transfection activity before and after the modification of devices was evaluated, and intracellular trafficking remained unclear. Therefore, it is understand to recognize which of the intracellular barrier should be intensively improved to enhance the transfection activity. To clarify the rate-limited process in the current non-viral vector, we compared the intracellular trafficking between adenovirus and LipofectAMINE PLUS. As a result, we found that difference of the transfection efficiency between adenovirus and LipofectAMINE PLUS was dominantly derived from the differences on transcription activity. Therefore it is essential to consider the regulation of the intranuclear events to improve the transfection activity of artificial vector.

Key words----adenovirus; lipoplex; quantification; intracellular trafficking

1. はじめに

地球上に生物が誕生してから, RNA あるいは DNA を核に持つウイルスは,様々な環境下におい て,生物とともに共存,進化を繰り返してきた.生 物の多様性に伴い,ウイルスも進化と淘汰を繰り返 すことにより多様性を獲得し,現在ではその感染メ カニズムも多岐に渡る.高い感染能を獲得する上で は,ウイルスは宿主細胞の核内にそのゲノムを効率 的に導入することが必須であり,細胞内に侵入した のちの細胞内動態を制御するための非常に巧みな機

*e-mail: akita@pharm.hokudai.ac.jp

本総説は、日本薬学会第 126 年会シンポジウム S7 で発表したものを中心に記述したものである.

構を進化とともに獲得してきた. 1980年代にカチ オン性リポソームを用いた細胞への遺伝子導入が試 みられてから,安全性の高い高効率な非ウイルスベ クターを開発するための多くの工夫がなされてきた が,その歴史はまだ 25年とウイルスベクターと比 較して非常に浅い.したがって,ウイルスベクター は非ウイルスベクター開発を行う上で学ぶべき存在 として君臨する.

効率的な遺伝子ベクターを開発するためには,組 織レベルにおけるターゲッティングのみではなく, 目的組織に到達したのちの細胞内取り込みやエンド ソーム脱出,核膜透過などを効率化するための,さ らに緻密な細胞内動態制御が必要である (Fig. 1). 本稿ではこれらのバリアを突破するための様々な試 みを紹介する.

取り込み過程

非ウイルスベクターの細胞への取り込み過程にお

[&]quot;北海道大学大学院薬学研究院(〒060-0812 札幌市北 区北12条西6丁目), ^b科学技術振興機構戦略的創造研 究推進事業(〒332-0012 川口市本町4-1-8 川口セン タービル), ^c独立行政法人医薬基盤研究所(〒567-0085 茨木市彩都あさぎ7-6-8)

Fig. 1. Intracellular Barriers Rate-limiting Transfection Activity To achieve an efficient transfection intracellular trafficking such as cellular uptake, endosomal escape, nuclear delivery must be overcome.

いては、(A) Absorptive mediated endocytosis と,

(B) Receptor mediated endocytosis の2種に大別す ることができる.前者のメカニズムにおいては,遺 伝子のリン酸基に由来する負電荷を利用してカチオ ン性リポソームや,カチオン性ポリカチオンと複合 体を形成させることにより,静電的相互作用を利用 して細胞表面との親和性を上昇させるものである. 一方で,これらの機構を狙ったアプローチでは,遺 伝子ベクターの細胞選択性を獲得できず,その臨床 的応用は *ex vitro* あるいは局所投与に限定される. 細胞選択性を出すための最も有効な手段として,後 者の経路を狙った細胞表面レセプターに対するリガ ンドが用いられている.これらの取り込みに共通す ることは,クラスリン被覆小胞を介して取り込まれ るという点である.

一方で最近,クラスリン被覆小胞を介さない細胞 内取り込み経路についても注目を集めており,HIV 由来 TAT タンパクに代表されるアルギニンに富む ドメインペプチド融合タンパクは、クラスリン非依 存的なマクロピノサイトーシスにより取り込まれる ことが示唆されている.またこの経路はアデノウイ ルスの侵入過程にも重要な役割を果たしていること が示唆されている.アデノウイルスは、細胞表面の coxsackie and adenovirus receptor (CAR) とファイ バー部位が結合したのち、さらに penton base の RGD モチーフを介して細胞表面のインテグリンと 結合する.¹⁾ RGD と penton base の結合は、ホスト 細胞側に p85/p110 phosphoinositide-3-OH kinase (PI3K)の活性化や,²⁾アクチン重合とマクロピノ サイトーシスなどが誘起されると考えられてい る.³⁾しかし,この経路が全体の取り込みの何パー セントに相当するかなど,不明な点は多い.

それでは、人工ベクターをこのようなマクロピノ サイトーシス経路を介して積極的に取り込ませるこ とはできるのであろうか?われわれは、リポソーム 表面に膜透過性ペプチドであるオクタアルギニンを 修飾した R8 リポソームを構築し、取り込み経路を 解析した.その結果.低密度修飾の R8 リポソーム は従来型のクラスリン被覆小胞により、また、高密 度修飾の R8 リポソームはマクロピノサイトーシス 経路で取り込まれることが明らかとなった.4) さら に、低温条件下によって取り込ませることによっ て、この高密度修飾リポソームは、膜系輸送を介さ ずに細胞内に取り込まれることが明らかとなっ た.5) これらに遺伝子を封入し、遺伝子発現を評価 した場合、低密度 R8 修飾リポソームと比べて、高 密度 R8 修飾リポソームにおける発現は、取り込み 量からでは説明できないほど劇的に高いことが明ら

北海道大学大学院薬学研究院助手. 1975年生まれ.東京大学薬学部卒業, 東京大学大学院薬学系研究科修士・博 士課程修了.2002年に博士号(薬学) を取得後,日本学術振興会特別研究員 を経て,2002年7月より北海道大学大 学院薬学研究院助手に就任,現在に至 る.遺伝子の細胞内イメージングと動

態制御を中心に研究を行っている.

かとなった. さらに、ローダミンを内封したリポ ソームの細胞内挙動を解析すると、低密度修飾の場 合に比べ、 高密度の場合の方が有意に長く蛍光シグ ナルが残ることが明らかとなった、このことは、低 密度修飾の場合では、クラスリン被覆小胞によって 取り込まれ、速やかにリソソームによって分解して しまうのに対し、高密度修飾では、マクロピノサイ トーシスによって取り込まれるために分解経路を免 れることを示唆するものである.4)一方,高密度修 飾遺伝子封入リポソームに着目すると、低温によっ て取り込ませた場合、取り込み量は予想と反して、 常温時のものと比べて若干低い程度であった. しか し、遺伝子の発現効率は、常温に取り込ませたとき に対して劇的に低いことが明らかとなった. 遺伝子 の核移行量を解析した結果、低温時に取り込まれた 遺伝子封入リポソームは、常温で取り込まれたもの と比較して、速度も効率も非常に低いことが明らか となった.5) 一般に、細胞質内の高分子の拡散は極 めて低いことが示されており、核移行を考えるに当 たり、生体の持つエネルギー依存的なベシクル輸送 系にベクターを乗せることが、効率的に遺伝子を核 まで輸送する上で有用な手段であることが示唆され る.以上の知見より、細胞内取り込み経路は、その 後の細胞内運命と大きく係わることが明らかとなっ た。6)

また,そのほかにも,Simian virus 40 (SV40)⁷な ど,カベオラによって取り込まれることが示唆され ていることからも,この分子機構を明らかとするこ とで,カベオラ依存的取り込み経路も遺伝子デリバ リーのターゲットとなるであろう.

3. エンドソーム脱出過程

上記のように、細胞への選択性をベクターに付加 するためには、レセプターを介したエンドサイトー シス経路をターゲットとすることは極めて有効であ るが、この経路をターゲットとする以上、エンド ソームのリソソームとの融合による遺伝子の分解 や、細胞外へのリサイクルは克服すべき問題であ る.これらを克服するデバイスとして、(A) pH 感 受性膜融合性脂質、(B) プロトンスポンジ効果を 持つポリカチオン、(C) pH 感受性膜融合性ペプチ ドなど、多くの素子が開発されてきた.

(A) に関しては, Dioleoylphosphatidyl ethanolamine (DOPE) がカチオン性リポソームを用いた 遺伝子導入のヘルパー脂質としてよく用いられ. pH7では安定な膜構造を保つものの、エンドサイ トーシスによって取り込まれたのちの pH 5-6の 環境下においては、ヘキサゴナル II 相構造を取 り、エンドソーム膜と融合することが知られてい る.⁸⁾ (B) に関してはまた, Behr らによって有用 性が証明されたポリエチレンイミンが有名である. このプロトンスポンジ仮説に従えば、プラスミド DNA と PEI のコンプレックスは、エンドソーム内 の酸性状況下において、その構造内にある二級アミ ンがエンドソーム内のプロトンを緩衝し、その結 果、過剰のプロトンと塩素イオンがエンドソーム内 に引き込まれ. 浸透圧に従って水分子が流入するこ とで膜構造が破壊される. 9 このような人工的デバ イスに加え、ウイルスのエンドソーム脱出機能を模 倣した戦略が近年クローズアップされている. イン フルエンザウイルスは、エンベロープ型ウイルスの 1つであるが、エンドサイトーシスで取り込まれた のち, エンベロープ上に存在する hemagglutinin (HA) 2 タンパクが弱酸性条件下で非可逆的な α へ リックス構造を取り, 疎水部がエンドソームと相互 作用したのちに膜融合を誘導する.¹⁰⁾この機構を利 用して、Wagner らは、HA2 タンパクの機能ドメ インである N 末の配列を基にした配列をトランス フェリン/ポリカチオン体を主体とした遺伝子ベク ターに修飾することにより、遺伝子発現の上昇に成 功している.¹¹⁾ さらに、このようなウイルスのエン ドソーム脱出機構に啓発され、酸性条件下で α-helix などの構造変化を起こすことが可能な人工的ペ プチドデバイスが開発されてきた. その1つとして, GALA が挙げられる. GALA は, その名の通り, グルタミン酸,アラニン,ロイシン,アラニンの繰 り返し配列を有するペプチドであり、pH 7.4 では ランダムコイル型であるが、酸性条件下でグルタミ ン酸の電荷が中和され、αヘリックス構造を取り、 膜中で 8―12 個からなるポアを形成することが知ら れている.12)われわれはこのペプチドのコレステ ロール誘導体を作製し、リポソーム脂質表面にトラ ンスフェリンとともに GALA を提示させることに より、トランスフェリンレセプターによりエンドサ イトーシスされたのち、リポソーム内封物を細胞質 内に効率的に放出することが可能であることを証明 した.13) この技術は、今後遺伝子デリバリーのみに

留まらず,薬物の細胞内デリバリーを行う上で非常 に有効であると考えられる.

4. 核移行過程

エンドソーム脱出ののち,遺伝子が最終的に機能 するためには、核膜を突破し、その最終的な転写部 位である核へ移行する必要がある. 遺伝子の核膜突 破の重要性を最も明確に示す報告としては、Pollard によって行われた,遺伝子のマイクロインジェ クションが挙げられよう.¹⁴⁾ LacZ をコードする遺 伝子を細胞質と核内にマイクロインジェクション し、インジェクションしたうちの遺伝子発現を示し た細胞数の割合を評価した結果、同コピー数をイン ジェクションした場合、核内インジェクションした 方が非常に高い遺伝子発現効率を示し、また、同レ ベルの遺伝子発現を示すために必要なコピー数は. 核内インジェクションをした際に比べて細胞質内イ ンジェクションをした場合では,100-1000 倍必要 であった、このことは、細胞質にインジェクション したうちの1%以下しか、核に移行しないことを明 確に示したデータである. また, 様々なベクターに おいて、核膜の消失する細胞分裂時に遺伝子発現が 亢進するという報告があることからも、 核膜が大き なバリアであることがうかがえる.15-17)特に生体 内の大部分は非増殖細胞であることからも、核膜突 破御成功は、遺伝子デリバリーの適応範囲を劇的に 拡大し、大きなブレイクスルーとなると期待される.

生体内においては、核と細胞質間の物質輸送は、 すべて核膜孔を介して行われている.核膜孔は多く のタンパクの複合体であり、2枚膜から形成される 核膜を貫通した構造をしている. 核膜孔を自由に受 動拡散できる物質サイズは, -9 nm (40-90 kDa 相当)であると言われており、それより大きなタン パクは核移行シグナル (Nuclear localization signal:NLS) 依存的に能動的に輸送されると考えて いる.¹⁸⁾ 最も典型的な例としては、SV40 ラージT 抗原由来 NLS が有名であるが、本分子内の NLS 配列が約 60 kDa のレセプターである importin α に よって認識され、さらにその N 末領域が importin β によって認識され、NLS/importin α /importin β の 複合体 (nuclear pore complex) を形成し、細胞質 から核へ核膜孔を介して輸送される. この過程にお いては、核膜孔は 39 nm 程度の分子まで透過させ ることができると考えられている.

遺伝子の場合,実際,どの程度のサイズまで核移 行することが可能なのであろうか?Wolffらは直線 型 DNA の核移行性を digitonin permeabilized cell を用いて評価を行っている.その結果,短い DNA (<200 bp)までは効率的に核内に入ることが示さ れたものの,遺伝子が長くなるにつれ効率が減少し, 1.5 kbpより大きくなると核移行効率が観察されな いという結果となった.^{19,20)}われわれの遺伝子治療 に用いるプラスミド DNA は,小さいもので 3 kbp 程度であると考えられるが,その際の分子量は数百 万にも及び,サイズ的にも遺伝子の核膜を介した受 動的な拡散は著しく制限されていると考えられる.

上記のようなタンパクの核膜透過過程に着目し. 積極的に核膜透過を上昇させるアプローチとして. まず、プラスミド自身に NLS を結合させるアプ ローチがなされてきた. アルブミンに対して NLS ペプチドを化学的にクロスリンクさせると、アルブ ミンの核内移行の上昇が認められたことからも、21) このような遺伝子の NLS 修飾は非常に合理的なア プローチであろうと考えられた. Behr らのグルー プは, 直線型約3.3 kbp のプラスミドの末端に対し, NLS を共有結合させることにより、10 倍から数 100 倍に遺伝子発現が上昇することを示してい る.²²⁾ しかし、同様な構造を有する NLS 修飾遺伝 子、あるいは、さらに末端の NLS 数を増やした遺 伝子を細胞質にマイクロインジェクションしても. その遺伝子発現効率は非修飾に比較して有意に上昇 しないことから、核移行には数個の NLS 分子では 不十分であろうと考えられている.23,24) この大きな 要因として、NLS 配列は一般に非常にカチオン性 に富んでおり、遺伝子の持つ負電荷と静電的に相互 作用してしまうために importin α による認識が抑 えられてしまうことが挙げられる. Wolffらは、遺 伝子に対し, NLS をランダムに共有結合させた結 果、核移行が上昇することを報告しているが、その 移行には多くの NLS の結合が重要であり,遺伝子 としての機能が失われる程の数(10 bp につき1個) の NLS) が必要であることを示している.²⁵⁾ 合成の 収率の低さも問題となり、現在では遺伝子に NLS を共有結合させるアプローチは主流とはなっていな い.

また,NLSを遺伝子に直接化学結合する方法の ほかにも,NLSを様々な媒体を介して、核膜透過

の促進を成功させた例も報告されている。Wolffら は、直線型 DNA の末端にビオチンラベルを行い、 ビオチンを介して NLS 結合 streptavidin とコンプ レックスを形成させることにより、1 kbp までのサ イズの遺伝子を非常に効率的に核膜に送達し、レ ポータージーンとしての green fluorescence protein (GFP)の発現効率を上昇させることに成功してい る.²⁰⁾ このように, NLS を直接 DNA に結合させる のではなく、タンパクを介して NLS を結合させ、 NLS と DNA 間の静電的相互作用を回避した形で 提示できれば、核移行性は得られる可能性がある. 一方、上記の理由から、プラスミドに修飾する核移 行性素子として、NLS 配列以外のカチオン性の低 いものを用いるという方法も挙げられる。これまで、 peptide nucleic acid (PNA) を介してステロイドを 修飾することにより、細胞質内のステロイドレセプ ターにより認識させ、本転写因子の核内移行ととも に核移行を促進させるアプローチ²⁶⁾や、ビオチン/ アビジン結合を介して importin β タンパク自身を 修飾する方法27)が報告され、いずれも遺伝子発現の 上昇が認められている.

第2のアプローチとして、核移行性を有する転写 因子が結合する遺伝子配列をプラスミドに挿入する ことにより、naked DNA 自身の遺伝子発現亢進を 狙ったアプローチも報告されている. この概念で最 も研究されているものの1つに、SV40 由来のエン ハンサーが挙げられる.²⁸⁻³²⁾本配列中には、AP-1, AP-2, NF-κBなどの基礎転写因子の結合領域が多 数存在しており、プラスミド DNA が細胞質で転写 因子に認識されれば、転写因子内の核移行シグナル によって核内に輸送されるという戦略である.細胞 質マイクロインジェクションや digitoin permeabilized cell を用いたアッセイ法により、遺伝子の核 移行性の上昇が示唆されている。また、平滑筋特異 的に発現する Smooth muscle gamma-actin (SMGA) のプロモーターを持つプラスミド DNA は、平滑筋 細胞特異的に遺伝子の核移行促進が認められること が示唆されている.30) このことより平滑筋特異的な 転写因子に認識され、プラスミド DNA が核移行を 示したと考えられる. このほかにも, NF-*κ*Bの認 識配列^{33,34)}や Epstein-Barr Virus 由来の ori P 配 列35)をプラスミド内に導入することで遺伝子発現が 上昇するなどの報告もあり、細胞内炎症シグナル依 存的あるいは、ウイルス感染細胞依存的な核移行性 制御など、環境応答的な核移行ストラテジーと考え られる.

一方で、これまで挙げた戦略のデメリットとし て、細胞質内において DNA は裸の状態で存在する ことが挙げられる.細胞内のプラスミド DNA の半 減期は 50-90 分であることが示されており、³⁶⁾ こ のような裸の DNA は核移行をする前に、細胞質内 のヌクレアーゼによりダメージを受ける可能性が挙 げられる.遺伝子の細胞内安定性を高める方法とし て、遺伝子をポリカチオンと凝集する方法が挙げら れる.³⁷⁾ また、上記のように、遺伝子への NLS の 直接修飾は、NLS と遺伝子間の静電的相互作用に より NLS 機能が発揮できないことを議論したが、 ポリカチオンと DNA をコンパクションすることに より、遺伝子の持つ負電荷を中和することができ、 より NLS の機能が発揮されることが期待される.

遺伝子デリバリーに昔からよく用いられていたポ リカチオンとして, poly L-lysine (PLL) が挙げら れる. Jans らのグループは PLL に NLS を結合さ せ, DNA のコンパクションを行った.³⁸⁾ 本コンパ クション体を用いて、塩化カルシウム法やリポフェ クション法によってトランスフェクションが試みら れたが、その遺伝子発現の上昇は2倍にも満たな い.³⁸⁾ NLS も PLL 同様、高いカチオン性を有する ため、NLS がコンパクションに消費され、importin タンパクに認識されなかったことが大きな要因 と考えられ, NLS のトポロジーをいかにコント ロールするかが鍵を握ると考えられる.一方、Diamond らは、グリシンに富み、カチオン性の比較的 少ない核移行性シグナルである M9 ペプチドに着目 し、ポリカチオン(ランダム化した SV40 由来 NLS 配列:ScT) とクロスリンクを行った.本 M9-ScT ペプチドと遺伝子複合体をリポフェクションす ることにより、プラスミド DNA 単独に比べ、63 倍程度の劇的な遺伝子発現の上昇が認められてい る.³⁹⁾ さらに最近では、アルギニンに富み、核移行 性も示唆されている、TAT タンパク由来 Protein Transduction Domain (PTD) のオリゴマー⁴⁰⁾とプ ラスミド DNA の複合体を形成させることにより、 カチオン性リポソームやデンドリマーによるトラン スフェクション活性が 10-100 倍常用することが示 されている. また, SV40 NLS の tetramer⁴¹⁾ や核 特異的ペプチドであるプロタミン^{42,43}との DNA の コンパクション体やアデノウイルスのコアペプチド である mu とプラスミド DNA 複合体を脂質でパッ ケージングした LMD パーティクル⁴⁴⁾は、PLL と のコンパクション、あるいはコンパクションをしな い遺伝子/脂質複合体に対し、非常に高い遺伝子発 現を示すことが報告されている.mu やプロタミン の高い核移行性については、われわれもマイクロイ ンジェクションによって確認済みである.^{43,45)}この ような、核移行性ペプチドとのコンパクション体も 有用な戦略の1つであると言えよう.

また、NLS 以外の素子として、糖の利用も有用 であると考えられる。1993年に初めてグルコース 修飾 BSA が核に集積するという結果が得られてか ら、⁴⁶⁾ ある種の糖も核レクチンによって認識され、 核へ移行することが明らかとなってきた。特にラク トースについては、PLL に修飾した際、ほかの糖 を修飾した場合よりも細胞への取り込みは低いもの の、遺伝子発現は高いという結果が得られており、 糖が細胞内動態過程に影響を及ぼし得ること⁴⁷⁾や、 実際の共焦点レーザー顕微鏡画像においても、遺伝 子の高い核への集積が認められていることから も、⁴⁸⁾ 核移行性素子としての有用性がクローズアッ プされている.

われわれは近年、さらに強力な核移行性デバイス を構築すべく、NLS と遺伝子の独立配置をねらっ たトポロジーコントロールを行っている. NLS を ポリカチオンに修飾し、遺伝子と凝縮を行う方法で は、NLS のパーティクル表面提示が凝縮化状態に 大きく依存するため、コントロールが困難となる. そこで、NLSの脂質誘導体を作製し、遺伝子/プラ スミドコアを、核移行性を有する脂質によってコー ティングを行った.⁴⁹⁾ このような構造を取ることに より, NLS の表面提示を積極的に行うことが可能 となると同時に、構成脂質の NLS 修飾脂質の割合 を変えるだけで修飾密度が容易に制御可能となる. このような核移行性戦略は、アデノウイルスにおい てもみられる.本ウイルスにおいては、DNA が外 殻タンパクに由来する NLS の機能により核膜孔の CAN/Nup214 に結合し、核膜上で崩壊して DNA を核内に到達させることが明らかとなっている.こ のような独立配置型ベクターを用いることにより、 非分裂細胞である樹状細胞に対して高い遺伝子発現 を示すことが明らかとなった.このように、核移行 性戦略の歴史は、核移行性素子のトポロジー変化と ともに変遷してきたと言えよう.

5. 細胞内動態に基づいた遺伝子ベクター開発

以上,細胞内動態を制御するための様々な試みを 紹介してきた.しかし,これらのもののほとんど は,個々のプロセス単独の改良に留まっており,個 々のプロセスの素子を組み合わせるという応用面に 関してはまだ発展途上の段階である.今後の遺伝子 デリバリー素子開発においては,それぞれの機能が 最適に機能するよう,遺伝子ベクターに組み込むこ とが非常に重要である.しかし,その最適化を行う 上では,個々の素子が細胞内でどの程度機能してい るか,その定量的な評価とその結果に基づくフィー ドバックが必要である.

しかし、これまでの遺伝子開発段階においては、 そのほとんどのものが最終的なアウトプット、すな わち、遺伝子発現のみを指標にしたものであり、実 際の細胞内動態はブラックボックスのままであっ た.この意味で、これまでの開発は試行錯誤的であ ったと言えよう.われわれは、ウイルスベクターに 匹敵する人工ベクターをいちはやく完成させるため に、Fig.2に示すような戦略を提案している。究極 的な比較として、目標となるウイルスベクターと現 状の人工ベクターの細胞内動態を比較し、「どこが」 「どれだけ」「なぜ」劣っているのかという、弱点と 原因を明らかにした上で、 克服する素子を開発し、 搭載するという戦略である.もし,発現がまだ不十 分であれば、さらに細胞内動態を再評価し、弱点を 洗い出すことが可能である. このようなフィードバ ックループは、人工ベクター改良の有用な手段にな ると考えられる.しかしながら、これまで、遺伝子 の細胞内動態を定量化する方法論自体が存在しなか ったため、このような戦略は取ることが困難であっ た.これまで橘らは、定量的な知見を得るために、 核分離と PCR を用いた,遺伝子の核内遺伝子量の 測定に着手してきた.500しかし、この方法をエンド ソーム/ライソソーム系に応用すると、分画プロト コール自身や収率や分画精度の計算の複雑さより, 非常に手間の掛かる方法である. この問題を解決す べく,われわれは共焦点レーザー顕微鏡を用いた, エンドソーム/リソソーム、細胞質、核内の遺伝子 量を同時に測定する方法論を開発した.51)遺伝子は

Fig. 2. Development of Non-viral Vectors Based on the Quantitative Comparison of Intracellular Trafficking with Viral Vector For the efficient development of non-viral vector, it is useful to identify 'Why' and 'To What Extent' current non-viral vectors are inferior to the viral one from the point of view of intracellular trafficking.

細胞に導入後,数時間の間はクラスターとして検出 されることが明らかとなっている。本方法はこの現 象を利用し,エンドソーム/リソソーム,及び核な どのオルガネラの染め分けをしてローダミンラベル した遺伝子の局在を明らかにした上で,遺伝子のク ラスター面積を遺伝子量の指標として3次元的に定 量する方法である(Fig. 3: Confocal Image-assisted 3-Dimensionally Integrated Quantification: CIDIQ).⁵¹⁾

そこで、本評価系を用いて、ウイルスベクターと 人工ベクター間の比較を行った.⁵²⁾本研究では、ウ イルスベクターの代表として様々な細胞種に対し、 最強の遺伝子発現を誇るアデノウイルスを、また、 人工ベクターの代表として、先に挙げたように非常 に効率的な遺伝子発現を示す、LipopfectAMINE PLUSを用い、比較検討を行った.なお、本研究で 用いているプロモーター、polyA 付加シグナルなど の配列は、プラスミド DNA とアデノウイルスで共 通のものを用いている.まず始めに両ベクターによ る遺伝子発現のプロファイルについて検討した.最 適化された LipofectAMINE PLUS 及びアデノウイ ルスのプロトコールに従いトランスフェクションし たところ、 両ベクターともトランスフェクション後、 3時間で遺伝子発現が認められ(Fig. 4(A)),以後 の両ベクターの発現活性はほぼ同じであることが明 らかとなった. このことから, LipofectAMINE PLUS は、アデノウイルスと同等のスピードで核ま で遺伝子を送達することや Ad に匹敵する発現活性 を有することが示唆された.一方,リアルタイム PCR により DOSE をルシフェラーゼ遺伝子のコ ピー数として表記して比較した結果、同程度の活性 を示すのに必要なコピー数は、LipofectAMINE PLUS においてアデノウイルスと比較して数千から 1万倍多いことが示された(Fig. 4(B)). In vivo へ の応用などを考えると、投与量を最小にするために は、単位コピー当たりの発現活性を上昇させる必要 があり、細胞内のどの過程にこの要因があるのかを 明らかにすることは有用である.

始めに, LipofectAMINE PLUS とアデノウイル スの細胞への取り込み過程を比較した. アデノウイ

Fig. 3. Methodology to Quantify the Intracellular Trafficking of Gene Vectors Based on the Confocal Images After the transfection of rhodamine-labeled genes, acidic compartment (*e.g.* endosome/lysosome) and nucleus was stained by Lysosensor and Hoechst 33342, respectively. Z-series of confocal images were captured by confocal laser scanning microscopy. The pixel areas of cluster was used as a index of the amount of pDNA.

Fig. 4. Comparison of Ttransgene Expression between Adenovirus and Lipofect AMINE PLUS

 A: Transfection activities were measured at indicated times after incubation with a optimized dose of 200 copies/cell (adenovirus) and 6.7×10⁵ copies/cell
 (LipofectAMINE PLUS). B: Luciferase gene expression transfected by Ad (triangle) or LFN (circle) were measured 6 h after incubation at the indicated dose.

ルス又は Lipofect AMINE PLUS をトランスフェク ション後、37°C で 1 h インキュベートし、細胞を 回収した. DNA を抽出し、real time PCR により 定量し、細胞数は β -actin のゲノム量を基に決定し た. 37°C インキュベート時の取り込み効率は, LipofectAMINE PLUS で Dose の 45%, アデノウ イルスで Dose の 10%と, LipofectAMINE PLUS の方が効率的であり, コピー数で約1万倍多くの DNA が取り込まれることが明らかとなった.

続いて、細胞内動態について解析した。 先に示し たように、CIDIQ 法により各オルガネラに存在す る遺伝子の割合を測定することが可能である. リア ルタイム PCR によって求まる細胞へ取り込まれた 遺伝子コピー数の絶対値にこれらの細胞内局在割合 を掛けることにより、オルガネラ内遺伝子量を算出 することが可能である. アデノウイルスについても. CIDIQ を利用してアデノウイルスの各オルガネラ への局在を解析した、アデノウイルスにおいては、 ゲノムそのものをラベルすることは不可能である. 本定量においては、アデノウイルスの外殻タンパク 質であるヘキソンを Texas Red によりラベルし た. その結果, LipofectAMINE PLUS と同様、エ ンドソーム・ライソソームに局在するときは黄色. 細胞質に局在するときは赤色に観察された.一方, 核内にも赤のシグナルの共局在は認められたが、ア デノウイルスは核移行の際、核膜孔上で崩壊し、ア デノウイルスのゲノムが外殻タンパクと解離するこ とから、これら核内のシグナルは核中のアデノウイ ルスのゲノム量を反映していないと考えられる. そ こで、アデノウイルスゲノムの核内移行量の算出に ついては核単離を行い、リアルタイム PCR によっ て定量を行った. 常法に従い核単離を行い. 遺伝子 量を定量した結果、1細胞当たり取り込まれたアデ ノウイルスの約36.6%に相当する7.3コピーが核に 存在していることが明らかとなった. Figure 5 には、 CIDIQ 及びリアルタイム PCR より得られた両ベク ターの細胞内オルガネラへの局在率並びに遺伝子量 について示している.トランスフェクション後1時 間でアデノウイルスは LipofectAMINE PLUS より も多く核に分布していることが明らかとなったが, その効率は数倍程度であり,細胞内動態の違いから は,大きな遺伝子発現効率の差は説明することは不 可能である.

最後に、核移行量について比較を行った.核内に 存在する遺伝子量は、LipofectAMINE PLUS で数 千倍高く、同程度の遺伝子発現を示すのに、 LipofectAMINE PLUS の方が桁違いに多くのコ ピー数が必要であることが示された.言い換えれば、 1 コピー当たりの核移行後の遺伝子発現効率は、ア デノウイルスの方が LipofectAMINE PLUS よりも 格段に高いことを示す結果であり、その差は約 8000 倍異なることが明らかとなった.したがって、 LipofectAMINE PLUS とアデノウイルスによる発 現効率の差の支配要因は、主に、核移行後の発現効 率にあることが明らかとなった.⁵²⁾

以上、本研究により細胞内動態はもちろんのこ と、新たな課題として、核内動態過程にも注目する 必要性が明らかとなった。もちろん、本研究は細胞 内動態の重要性を否定するものではない。細胞内動 態と核内動態過程は直列でつながっており、どこの プロセスで止まっても、遺伝子の発現は望めない。 本結果は、細胞内動態を制御した上で、さらに核内 動態も制御する必要があるという重要な結果を示す ものである。今後、核内動態のイメージング方法の 確立を急ぐとともに、本情報をフィードバックする ことで優れたベクターの構築を目指すことが重要で

Fig. 5. Comparison Intracellular Distribution between Adenovirus and Lipofect AMINE PLUS Intracellular distribution of adenovirus and LipofectAMINE PLUS at 1 hour after the transfection.

あると考えている.

6. おわりに

以上,遺伝子デリバリーの障害となる過程につい て,その克服へのトライアルも含めて概説した.各 過程に対して,非常に優れた素子は開発されつつあ るが,今後はそれぞれの素子をいかに最適に1つの ベクターに組み込むことができるかが重要な課題と なろう.われわれのベースとなる多機能性エンベ ロープ型ナノ構造体^{37,53)}は,このような Packaging 戦略を実現するための1つのナノ構造体であり,ウ イルスベクターに匹敵するベクター開発を目指して 研究を行っている.

REFERENCES

- Mizuguchi H., Koizumi N., Hosono T., Ishii-Watabe A., Uchida E., Utoguchi N., Watanabe Y., Hayakawa T., *Gene Ther.*, 9, 769-776 (2002).
- Li E., Stupack D., Klemke R., Cheresh D. A., Nemerow G. R., J. Virol., 72, 2055–2061 (1998).
- Meier O., Boucke K., Hammer S. V., Keller S., Stidwill R. P., Hemmi S., Greber U. F., J. *Cell Biol.*, **158**, 1119–1131 (2002).
- 4) Khalil I. A., Kogure K., Futaki S., Harashima H., J. Biol. Chem., 281, 3544–3551 (2006).
- 5) Iwasa A., Akita H., Khalil I. A., Kogure K., Futaki S., Harashima H., *Biochim. Biophys. Acta* (in press).
- Khalil I. A., Kogure K., Akita H., Harashima H., *Pharmacol. Rev.*, 58, 32–45 (2006).
- Norkin L. C., Anderson H. A., Wolfrom S. A., Oppenheim A., J. Virol., 76, 5156–5166 (2002).
- Xu Y., Szoka Jr. F. C., *Biochemistry*, 35, 5616 -5623 (1996).
- Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P., *Proc. Natl. Acad. Sci. U.S.A.*, 92, 7297 -7301 (1995).
- Dutch R. E., Jardetzky T. S., Lamb R. A., Biosci. Rep., 20, 597-612 (2000).
- Plank C., Oberhauser B., Mechtler K., Koch C., Wagner E., J. Biol. Chem., 269, 12918–12924 (1994).
- 12) Parente R. A., Nir S., Szoka Jr. F. C., Biochemistry, 29, 8720-8728 (1990).

- Kakudo T., Chaki S., Futaki S., Nakase I., Akaji K., Kawakami T., Maruyama K., Kamiya H., Harashima H., *Biochemistry*, 43, 5618–5628 (2004).
- Pollard H., Remy J. S., Loussouarn G., Demolombe S., Behr J. P., Escande D., J. Biol. Chem., 273, 7507–7511 (1998).
- Escriou V., Carriere M., Bussone F., Wils P., Scherman D., J. Gene Med., 3, 179–187 (2001).
- 16) Mortimer I., Tam P., MacLachlan I., Graham
 R. W., Saravolac E. G., Joshi P. B., *Gene Ther.*, 6, 403–411 (1999).
- Tseng W. C., Haselton F. R., Giorgio T. D., Biochim. Biophys. Acta, 1445, 53-64 (1999).
- Allen T. D., Cronshaw J. M., Bagley S., Kiseleva E., Goldberg M. W., J. Cell Sci., 113 (Pt 10), 1651–1659 (2000).
- Hagstrom J. E., Ludtke J. J., Bassik M. C., Sebestyen M. G., Adam S. A., Wolff J. A., J. Cell Sci., 110 (Pt 18), 2323–2331 (1997).
- 20) Ludtke J. J., Zhang G., Sebestyen M. G., Wolff J. A., J. Cell Sci., 112 (Pt 12), 2033– 2041 (1999).
- 21) Tachibana R., Harashima H., Shono M., Azumano M., Niwa M., Futaki S., Kiwada H., *Biochem. Biophys. Res. Commun.*, 251, 538-544 (1998).
- Zanta M. A., Belguise-Valladier P., Behr J.
 P., Proc. Natl. Acad. Sci. U.S.A., 96, 91–96 (1999).
- 23) Nagasaki T., Myohoji T., Tachibana T., Futaki S., Tamagaki S., *Bioconjug. Chem.*, 14, 282–286 (2003).
- 24) Tanimoto M., Kamiya H., Minakawa N., Matsuda A., Harashima H., *Bioconjug. Chem.*, 14, 1197–1202 (2003).
- Sebestyen M. G., Ludtke J. J., Bassik M. C., Zhang G., Budker V., Lukhtanov E. A., Hagstrom J. E., Wolff J. A., *Nat. Biotechnol.*, 16, 80–85 (1998).
- 26) Rebuffat A., Bernasconi A., Ceppi M., Wehrli H., Verca S. B., Ibrahim M., Frey B. M., Frey F. J., Rusconi S., *Nat. Biotechnol.*, 19, 1155–1161 (2001).
- 27) Nagasaki T., Kawazu T., Tachibana T., Tamagaki S., Shinkai S., J. Control Release, 103, 199–207 (2005).
- 28) Dean D. A., Exp. Cell Res., 230, 293-302

(1997).

- 29) Dean D. A., Dean B. S., Muller S., Smith L.
 C., *Exp. Cell Res.*, 253, 713–722 (1999).
- Vacik J., Dean B. S., Zimmer W. E., Dean D.
 A., *Gene Ther.*, 6, 1006–1014 (1999).
- Wilson G. L., Dean B. S., Wang G., Dean D.
 A., J. Biol. Chem., 274, 22025–22032 (1999).
- 32) Young J. L., Benoit J. N., Dean D. A., Gene Ther., 10, 1465–1470 (2003).
- Mesika A., Grigoreva I., Zohar M., Reich Z., Mol. Ther., 3, 653–657 (2001).
- 34) Mesika A., Kiss V., Brumfeld V., Ghosh G., Reich Z., *Hum. Gene Ther.*, 16, 200–208 (2005).
- 35) Langle-Rouault F., Patzel V., Benavente A., Taillez M., Silvestre N., Bompard A., Sczakiel G., Jacobs E., Rittner K., J. Virol., 72, 6181– 6185 (1998).
- 36) Lechardeur D., Sohn K. J., Haardt M., Joshi P. B., Monck M., Graham R. W., Beatty B., Squire J., O'Brodovich H., Lukacs G. L., *Gene Ther.*, 6, 482–497 (1999).
- 37) Kogure K., Moriguchi R., Sasaki K., Ueno M., Futaki S., Harashima H., J. Control Release, 98, 317–323 (2004).
- 38) Chan C. K., Jans D. A., Hum. Gene Ther., 10, 1695–1702 (1999).
- Subramanian A., Ranganathan P., Diamond S. L., *Nat. Biotechnol.*, **17**, 873–877 (1999).
- 40) Rudolph C., Plank C., Lausier J., Schillinger
 U., Muller R. H., Rosenecker J., J. Biol.
 Chem., 278, 11411–11418 (2003).
- 41) Ritter W., Plank C., Lausier J., Rudolph C., Zink D., Reinhardt D., Rosenecker J., *J. Mol. Med.*, 81, 708-717 (2003).

- 42) Masuda T., Akita H., Harashima H., FEBS Lett., 579, 2143–2148 (2005).
- 43) Sorgi F. L., Bhattacharya S., Huang L., *Gene Ther.*, 4, 961–968 (1997).
- Keller M., Harbottle R. P., Perouzel E., Colin M., Shah I., Rahim A., Vaysse L., Bergau A., Moritz S., Brahimi-Horn C., Coutelle C., Miller A. D., *Chembiochem.*, 4, 286–298 (2003).
- 45) Akita H., Tanimoto M., Masuda T., Kogure K., Hama S., Ninomiya K., Futaki S., Harashima H., *J. Gene Med.*, 8, 198–206 (2006).
- 46) Duverger E., Carpentier V., Roche A. C., Monsigny M., *Exp. Cell Res.*, 207, 197–201 (1993).
- 47) Fajac I., Briand P., Monsigny M., Midoux P., *Hum. Gene Ther.*, 10, 395–406 (1999).
- Klink D. T., Chao S., Glick M. C., Scanlin T.
 F., *Mol. Ther.*, 3, 831–841 (2001).
- Nakamura T., Moriguchi R., Kogure K., Minoura A., Masuda T., Akita H., Kato K., Hamada H., Ueno M., Futaki S., Harashima H., *Biol. Pharm. Bull.*, 29, 1290–1293 (2006).
- 50) Tachibana R., Harashima H., Shinohara Y., Kiwada H., Adv. Drug Deliv. Rev., 52, 219– 226 (2001).
- 51) Akita H., Ito R., Khalil I. A., Futaki S., Harashima H., *Mol. Ther.*, **9**, 443–451 (2004).
- 52) Hama S., Akita H., Ito R., Mizuguchi H., Hayakawa T., Harashima H., *Mol. Ther.*, 13, 786–794 (2006).
- 53) Kamiya H., Akita H., Harashima H., Drug Discov. Today, 8, 990–996 (2003).