-Reviews-

選択的 LTB₄ 受容体阻害活性を有する 2-Alkylcarbamoyl-1-methylvinylbenzo[b]furan 誘導体の合成とそのコンフォメーション^{1,2)}

安藤久美子

Synthesis of 2-, 4- and 5-(2-Alkylcarbamoyl-1-methylvinyl)-7-alkyloxybenzo[b]furans and their Leukotriene B₄ Receptor Antagonistic Activity

Kumiko ANDO

Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11–68 Koshien Kyuban-cho, Nishinomiya 663–8179, Japan

(Received July 7, 2005)

Variable 7-carboxylpropoxy or (1-phenyl) ethoxybenzo [b] furan derivatives with (E)- and (Z)-2-alkylcarbamoyl-1-methylvinyl groups at the 2-, 4-, and 5-positions were prepared to find novel and selective leukotriene B₄ (LTB₄) receptor antagonists. (E)-2-(2-Diethylcarbamoyl-1-methylvinyl)-7-(1-phenylethoxy) benzo [b] furan (4v) showed selective inhibition of the human BLT₂ receptor (hBLT₂). On the other hand, (E)-2-acetyl-4-(2-diethylcarbamoyl-1-methylvinyl)-7-(1-phenylethoxy) benzo [b] furan (7c) inhibited both human BLT₁ receptor (hBLT₁) and hBLT₂. The (E)-2-(2-diethylcarbamoyl-1-methylvinyl) group lay on approximately the same plane as the benzo [b] furan ring, whereas the (E)-4-(2-diethylcarbamoyl-1-methylvinyl) group had a torsion angle (45.7°) from the benzo [b] furan ring plane. However, the (Z)-(2-alkylcarbamoyl-1-methylvinyl) benzo [b] furans were inactive. The inhibitory activity depended on the conformation of the 2-alkylcarbamoyl-1-methylvinyl groups.

Key words—leukotriene B_4 antagonist; BLT; 2-alkylcarbamoyl-1-methylvinyl groups; conformation; benzo [b] furan

1. はじめに

Leukotriene B_4 (LTB₄) は、アラキドン酸に由来 する生理活性脂質であり生体防御に重要な役割を果 たしている.しかし、LTB₄の過剰産生は気管支喘 息、腸疾患³⁻⁸⁾など様々な炎症性疾患の発症、増悪 の原因になると考えられている.そのため、様々な LTB₄ 受容体拮抗化合物が、抗炎症薬としての臨床 使用を目指して合成されてきたが、臨床使用には至 っていない.⁹⁻²¹⁾

しかし近年,第2のLTB₄ 受容体である BLT₂受 容体が新たに発見され,続いてクローニングも成し 遂げられた.²²⁻²⁶⁾ これを契機として LTB₄ 受容体拮 抗化合物を用いて,動脈硬化症,^{27,28)} 臓器移植時の 免疫抑制,^{29,30)} 疥癬,³¹⁾ 膵臓癌,^{32,33)} 慢性関節リウマ チ³⁴⁻³⁷⁾への適応が研究され始め,LTB₄ 受容体拮抗

e-mail: kumikoan@mwu.mukogawa-u.ac.jp

薬の創製は新しい局面を迎えていると考えられる.

そこで筆者は、 BLT_1 and/or BLT_2 受容体拮抗活 性を指向した benzo [*b*] furan 誘導体の合成を行 い、それらの LTB₄ 受容体阻害活性を評価した.そ の結果、 BLT_1 , BLT_2 両受容体、又は選択的な BLT_2 受容体阻害活性を有する benzo [*b*] furan 誘導体を 見出した.さらに、受容体選択性と化合物のコンフ ォメーションとの関連について知見を得たので報告 する.

2. Design

これまでに合成されてきた LTB4 受容体拮抗化合物は、主に脂肪族アルキルを有する化合物、エーテル結合を有する化合物に大別される(Fig. 1).筆者は、このような複数のコンフォメーションをとり得る脂肪族アルキル化合物、エーテル化合物よりも、コンフォメーションが固定された単純な複素環化合物³⁸⁻⁴⁵⁾の方が生理活性発現物質としてより好ましいと考え、次のようなデザインを考案した. LTB4 の共役二重結合、単独二重結合、OH 基を環化することにより、benzo[b] furan 骨格を想定し、

武庫川女子大学薬学部 (〒663-8179 西宮市甲子園九番 町 11-68)

本総説は、平成16年度日本薬学会近畿支部奨励賞の受 賞を記念して記述したものである。

Fig. 1. Structures of Reported LTB₄ Receptor Antagonists

さらに LTB₄ の末端構造を 3- カルボキシプロポキ シ基 (O(CH₂)₃COOH) と考えた. 一方, 筆者ら は最近, α , β - 不飽和カルバモイル基⁴⁶⁾を有する benzo [*b*] furan 誘導体が興味深い生理活性を示すこ とを見出している. ^{47,48)} この知見に基づいて考案し た種々の 2-alkylcarbamoyl-1-methylvinyl 基^{49,50)}を, 3- カルボキシプロポキシ基を 7 位に有する benzo [*b*] furan 環の 2 位, 4 位, 5 位に導入した誘導体を デザインし, 合成を行った (Fig. 2).

3. Benzo[b]furan 誘導体の合成

3-1. 2-(2-Alkylcarbamoyl-1-methylvinyl) benzo [b]furan 誘導体の合成 Benzo[b]furan 骨格の 2 位への 2-alkylcarbamoyl-1-methylvinyl 基の導入 は、アセチル基に対する Horner-Wadsworth-Emmons (HWE) 反応⁵¹⁻⁵³⁾の適応を検討した (Scheme 1). 2-Acetyl-7-hydroxybenzo [*b*] furan (1a-c) の 7 位水酸基に対して,種々のアルキルハライドを用い てアルキル化を行い,対応するアルキルオキシ体 (2a-q)を得た.これら2a, c-e, g-j, n, p, q を, NaH存在下ホスホノアミド類 (3a-g)⁵⁴⁾を用いて HWE 反応を行い目的化合物である 2 位に 2-alkylcarbamoyl-1-methylvinyl 基を有する benzo [*b*] furan 誘導体 (4a-z, α) を得た.

化合物 4 は、 E 体、 Z 体の混合物として得られた ため、これらをカラムクロマトグラフィーで分離し、 NMR、 Nuclear Overhauser Enhancement (NOE) を 用いて構造を決定した (Fig. 3). NOE において、 (E)-4 では、ビニル基上の CH₃ と benzo [b] furan の 3 位の H との間にのみ NOE 相関が観測され、 (Z)-4 では、ビニル基上の CH₃ は、benzo [b] furan の 3 位の H、ビニル基上の CH₃ は、benzo [b] furan

Fig. 2. Designed Benzo [b] furan Compounds (I, II, III) and Possible Conformers (A, B) of LTB₄

相関が観測された. ビニル基上の CH_3 は, E体, Z体ともに 3 位の H 間との NOE 相関が観測された ことから、2 位のビニル基は benzo [b] furan の 2 位, 3 位間の二重結合と s-*trans* であると決定した.次に,化合物 4 の (*E*)-,(*Z*)-2-(2-alkylcarbamoyl-1-methylvinyl) 基の benzo [*b*] furan 平面に対するね

じれ角を, MM2 (CambrigeSoft, Chem 3D 5.0) を 用いて算出したところ, E体では 0—4°, Z体では 25—27°であるという結果を得た. これらの結果を 確認するため, (E)-4 α の X 線結晶解析を行い, 2 位の 2-alkylcarbamoyl-1-methylvinyl 基の二重結合 は, benzo[b] furan 平面に対して 6.9°の角度に存在 することを明らかとした (Fig. 4).^{1,2)} このことか ら, 化合物 (E)-4 の 2 位の 2-alkylcarbamoyl-1methylvinyl 基の二重結合は benzo[b] furan 平面と ほぼ同一平面上に存在すると決定した.

HWE 反応により合成した化合物 4 の, E 体, Z 体の生成比を検討した(Table 1). 塩基として NaH を用いた場合, E 体が優位に生成した(Eselectivity: 51—100%).しかし,スルフォンアミド 基を有する化合物(4q—s)では E 選択性の低下が みられた(E-selectivity: 11—34%).^{51,55)} 選択性を検 討するため,塩基として NaH の代わりに LiCl, 1, 8-diazabicyclo [5.4.0] undec-7-ene(DBU)を用いた ところ,若干の E 選択性の向上がみられた.(4a, c, e, h—m, E selectivity: 67—100%)^{56,57)} ホスホノアミ

Fig. 3. Structures of (E)- and (Z)-4 α , and NOE Correlations

ド類 (3) の代わりにジエチルホスホノ酢酸エチ ル⁵⁸⁻⁶⁰⁾を用いて NaH 又は LiCl/DBU 条件下反応 を行ったが, 同様に *E* 体が優位に生成した (Scheme 1, 5a-h).

3-2. 4-(2-Alkylcarbamoyl-1-methylvinyl) benzo [b]furan 誘導体の合成 次に, benzo[b]furan 骨格の4位への2-alkylcarbamoyl-1-methylvinyl 基 の導入は, 芳香族ハロゲンとアルケンを用いた Heck 反応^{50,61)}の適応を検討した (Scheme 2).

2-Acetyl-7-hydroxybenzo [*b*] furan (1a)⁶² を, NBS を用いて 4 位を選択的にブロム化し、4- ブロ モ体 (1b) を得た. これらの 7 位水酸基をアルキ ル化したアルキルオキシ体 (2j—m, o) を,酢酸パ ラジウム (II),トリ-o-トリルホスフィン,トリ エチルアミンを用いて Heck 反応条件下,クロトン アミド類 (6a—e) を反応させ、E 選択的に 4 位に 2-alkylcarbamoyl-1-methylvinyl 基 を 有 す る benzo [*b*] furan 誘導体 ((*E*)-7a—o) を得た. 2- アセチ ル体 ((*E*)-7a) はさらに桂皮酸に類似した構造を 有する (*E*)-8a, b へと導いた.

このようにして合成した 4 位置換体 ((*E*)-7)の 構造を,NOE を用いて検討した.ビニル基上の CH₃ は, benzo [*b*] furan の 3 位の H, 5 位の H との 間に,ともに NOE 相関がみられ,2 位置換体 ((*E*) -4) とは異なった挙動を示した (Fig. 5).この違い について検討するために,2-alkylcarbamoyl-1methylvinyl 基のコンフォメーションについて, MM2, Dreiding Stereomodels (BÜCHI 社)を用い て検討したところ,4 位の炭素とビニル基炭素間の 自由回転は、ビニル基と3 位,5 位 H との立体障

 $(E)-4\alpha$

(*E*)-7i

Fig. 4. X-Ray Structures of (E)-4 α and 7i

	Base				
Compd	NaH		LiCl/DBU		
	E/Z ratio ^{<i>a</i>)}	Yield (%)	E/Z ratio ^{<i>a</i>)}	Yield (%)	
4a	74:26	71.5	71:29	50.9	
4b	77:23	81.6			
4c	72:28	96.9	77:23	49.8	
4d	81:19	87.2			
4e	78:22	87.2	82:18	74.5	
4f	68:32	37.6			
4g	72:28	76.5			
4h	62:38	79.1	64:36	50.9	
4 i	76:24	70.0	83:17	46.5	
4j	71:29	80.7	82:18	42.0	
4k	80:20	75.3	84:16	89.7	
4 1	61:39	64.5	73:27	41.5	
4m	54:46	82.6	67:33	18.6	
4n	72:28	90.0			
4 0	81:19	57.0			
4p	69:31	25.6			
4q	22:78	53.0			
4r	11:89	47.0			
4 s	34:66	52.0			
4t	72:25	35.5			
4u	$75:25^{b}$	10.8			
4 v	64:36	64.4			
4 w	80:20	54.0			
4 x	64:36	17.8			
4 y	70:30	55.4			
4z	60:40	90.9			
4α	57:43	77.5			
5a	$E \rightleftharpoons 100$	68.5			
5b	64:36	52.0			
5c	64:36	65.9			
5d	62:38	75.1	$E \rightleftharpoons 100$	81.7	
5e	$E \rightleftharpoons 100$	52.0			
5f	71:29	84.0	$E \rightleftharpoons 100$	53.6	
5g	51:49	49.4			
5h	70:30	51.9			

Table 1. Isomeric Ratio of 2-(2-Alkylcarbamoyl-1-methylvinyl) benzo [b] furans (4) and 2-(2-Ethoxycarbo-1methylvinyl) benzo [b] furans (5)

a) The ratio was determined using the signal intensity of the olefinic methyl group ($E \rightleftharpoons 2.3 \text{ ppm}$, $Z \rightleftharpoons 2.2 \text{ ppm}$) or olefinic proton ($E \rightleftharpoons 6.9 \text{ ppm}$, $Z \rightleftharpoons 6.0 \text{ ppm}$) in ¹H–NMR. b) The ratio was determined by HPLC.

害があるために困難であると考えられた. (*E*)-7 と 類似の構造を有する β -chloro- β - (2,4,6-trimethyl-3bromophenyl)- α -methylacrylic acid (**IV**), ⁶³⁾ o- (β , β dimethyl- α -isopropylvinyl) phenyltrimethylammonium iodide (**V**)⁶⁴⁾においては、フェニル炭素原子と ビニル炭素原子間の自由回転が立体障害により阻害

されるため分子不斉化合物となり、適切な塩とする ことで分離できると報告されている(Fig. 5). こ のことから、(E)-7 においても、4 位炭素とビニル 炭素原子間の自由回転が、3位、5位Hとの間の立 体障害により阻害され、分子不斉化合物として存在 することが考えられた.このことを検討するため、 7位に不斉炭素原子を有する 7-(1-フェニルエトキ シ)体((*E*)-7c-g)を合成し,¹H-NMRを用いて ジアステレオマーの存在を精査したが、ジアステレ オマーは確認されなかった. この結果から、(E)-7 の4位炭素原子とビニル炭素原子間の自由回転の阻 害は、分子不斉を形成するには十分でないと考えら れた.恐らく、4位のビニル基と3位、5位Hとの 重なりが十分ではないためと思われる.これらのこ とから、(E)-7の構造を決定するため、(E)-7iの X線結晶解析を行い、4位の2-alkylcarbamoyl-1methylvinyl 基の二重結合は, benzo [b] furan 平面 に対して 45.7°の角度に存在することを明らかとし た (Fig. 4).^{1,2)} 他の4位置換体 ((E)-7) について も MM2 を用いて検討したところ、ねじれ角は 38.8 -47.9°と算出された. この値から考えられる(E) -7 のコンフォメーションと、上記 NOE 相関結果は よく一致した.以上のように, (E)-4の2位の2alkylcarbamoyl-1-methylviny 基が benzo[b] furan と ほぼ同一平面に存在するのに対して, (E)-7の4位 の 2-alkylcarbamoyl-1-methylvinyl 基は、 benzo [b]furan 平面と約46°の角度に存在するという特徴が 認められた. 2-Alkylcarbamoyl-1-methylvinyl 基は 置換位置によって、異なったねじれ角で存在するこ とが明らかとなった.

3-3. 5-(2-Alkylcarbamoyl-1-methylvinyl) benzo [*b*]furan 誘導体の合成 5位に 2-alkylcarbamoyl-1-methylvinyl 基を有する benzo [*b*] furan 誘導体の 合成は、4位置換体の場合と同様に Heck 反応を用 いて行った (Scheme 3).

化合物 (9, ^{65,60} 10⁴⁸)) より合成した 5-bromobenzo [*b*] furan 体 (11a—c) に対してクロトンアミド類 (6a—c) を用いて Heck 反応を行い, 5 位に 2alkylcarbamoyl-1-methylvinyl 基を有する benzo[*b*] furan 誘導体 ((*E*)-12a—d, g, h) を得た. 2- アセ チル体 ((*E*)-12c) は, さらに HWE 反応を適応し (*E*)-12e を得, 続いて加水分解を行い (*E*)-12f を 得た.

(*E*)-7i

Fig. 5. NOE Correlation and Structure of (E)-7i, and Structure of Molecular Dissymmetrical β -Chloro- β -(2,4,6-trimethyl-3bromophenyl)- α -methylarylic Acid (IV) and o-(β , β -Dimethyl- α -isopropylvinyl) phenyltrimethylammonium Iodide (V)

これらの構造を, NMR, NOE を用いて検討した. (*E*)-12の NOE において, ビニル基上の CH₃ と H は, ともに 4 位, 6 位 H に NOE 相関を示し, 4 位置換体 ((*E*)-7)の場合と同様の挙動を示した. MM2 によりさらに検討を行い, 5 位の 2-alkylcarbamoyl-1-methylvinyl 基と benzo [*b*] furan 平面との 角度は 31.3—38.9°と算出された. 以前の本研究室 の研究により, (*E*)-12 と同様に benzo [*b*] furan の 5 位に 2-alkylcarbamoyl-1-methylvinyl 基を有する 2-(4-cyanobenzoyl)-3-(*Z*)-(2-cyano-3-hydroxybut2-enonyl) amino-5-(*E*)-(2-diethylcarbamoyl-1-methylvinyl) benzo [*b*] furan の 2-alkylcarbamoyl-1-methylvinyl 基と benzo [*b*] furan 平面との角度は 33.5°⁴⁸) と決定されている. これらの結果から, (*E*)-12 に おける 5 位の (*E*)-2-alkylcarbamoyl-1-methylvinyl 基も 4 位置換体 ((*E*)-7) の場合と同様に, benzo [*b*] furan 平面と同一平面には存在しないと考えら れるが, 4 位の場合と比較して立体的な障害が少な いため、ねじれ角が小さいと思われる.

Fig. 6. Effect of (E)-4c, (E)-4f, (E)-7c on LTB₄-induced TXB₂ Release from Bronchoalveolar Eosinophils Harvested from Sephadex G-200-treated with Guinea Pigs (mean \pm S.E., n=3)

(*E*)-4c, (*E*)-4f, (*E*)-7c was added 5 min before eosinophil stimulation by LTB₄ (100 nM). Statistically significant differences from the control are indicated (*p < 0.05, ***p < 0.001, Bonferroni's multiple test). Spon: Spontaneous, Cont: Control, a) Inhibition (%).

4. 生理活性の評価

合成した benzo [b] furan 誘導体の LTB₄ 受容体に 対する antagonist 活性の検討を行った.

始めに、モルモットの気管支及び肺胞内より採取 し精製した好酸球を、LTB₄で刺激した際に引き起 こされる TXB₂ 遊離に及ぼす化合物の影響を検討し た (Table 2).⁶⁷⁾ (*E*)-4b['], c, d, f, g, (*Z*)-4g, (*E*)-4n, n['], o, u, (*E*)-7c, g, i, (*E*)-8b は 100 μM の濃度にお いて完全に TXB₂ 遊離を抑制した.次に,100 μM で阻害活性が認められたこれらの化合物を1μM,10 nM の濃度において評価を行ったところ,(*E*)-4b', c, f,(*E*)-7c が阻害活性を示した.これら4化合物 は 0.1 nM—1μM の濃度において,濃度依存的な阻 害活性を示した(Fig. 6).最も強い阻害活性を示 した(*E*)-4c は,1μM の濃度においてほぼ完全に TXB₂ 遊離を抑制し,100 nM において 96.2%,10

		Concentration	
Compd ^a	100 µм	$1 \mu \mathrm{M}^{b)}$	10 nm ^{b)}
4b'	0.2	0.3	47.9
4c	0.1	0.2	77.8
4d	2.7	40.9	57.1
4e	45.8		
4 f	0.5	0.3	48.6
4g	0.2	56.6	90.1
(Z)-4g	0.3	84.5	94.1
4h	16.0		
4 i	91.8		
4j	118.6		
4k	115.4		
(Z) -4k	115.4		
41	127.3		
4m	112.4		
(Z) -4m	14.1		
4n	1.4	64.7	87.2
4n'	0.07	44.9	96.3
40	n.d. ^{<i>c</i>)}	60.7	93.1
(Z)-4q	54.0		
4r	39.0		
(Z)-4r	60.7		
4u -	0.2	69.1	97.4
7a -	45.0		<u> </u>
7c	0.8	3.7	89.1
7d -	41.9		
/e 76	23.7		
/I 7a	81.7	65 0	06.2
/g 7h	1.0	63.9	90.3
711 7i	52.1 n.d.c)	16.2	82.6
71 7i	10.2	10.2	85.0
'J 7k	10.2		
71	122 0		
7m	39.1		
8a	101 3		
8b	6.1	77 8	97 4
12a	56.7		• •
12b	113.9		

Table 2. LTB₄ Antagonistic Activity (Ratio of Amount of TXB₂ Released against Control (%))

a) Compounds without indication of (Z) are (E)-isomers. b) Fourteen potent compounds were further evaluated at concentrations of $1 \,\mu M$ and $10 \,\text{nm. c}$) n.d.: no TXB₂ release was detected.

nM において 26.8% の TXB₂ 遊離抑制を示した. (E)-4b', f, (E)-7c もまた 1 μM の濃度においてほ ぼ完全に TXB₂ 遊離を抑制したが, 100 nM におい ては, (E)-4c には及ばなかった. この評価により, (E)-4, (E)-7 は LTB₄ 依存性 TXB₂ 遊離を抑制する ことが確認されたが、5位置換体である化合物(E) -12において、阻害活性は認められなかった.⁴⁸⁾

次に、BLT₁, BLT₂ 受容体選択的阻害活性検討の ため, BLT₁, BLT₂ の単独過剰発現細胞である CHO-hBLT₁ (hBLT₁), CHO-hBLT₂ (hBLT₂) を用 いた LTB₄ 依存性カルシウム上昇反応に対する阻害 活性の評価を行った.^{26,68)} 始めに, 10 µM の濃度に おいて2位置換体 ((E)-4a, b', c, d, d', e, f, g, n', u, v,w,y,z,(Z)-4a,v),7位置換体 ((E)-7a,c,d,g,i, j, n, (E)-8b), 5位置換体 ((E)-12c) を評価した (Table 3). 2位置換体である (E)-4a, b', d, d', e, f, g, v, yは、hBLT₁よりもhBLT₂のカルシウム遊離 を強く抑制する傾向が確認され、hBLT2において 70%以上のカルシウム遊離抑制作用を示した.しか し、(Z)-4a, vは、カルシウム遊離抑制効果は認め られなかった.一方,4位置換体である(E)-7cは, hBLT₁, hBLT₂ 両受容体に対して強いカルシウム遊 離抑制作用を示した.

さらに、これらの受容体選択性と濃度依存性につ いて検討するため、強い「阻害」活性が認められた (*E*)-4a, b', d, f, v, y, (*E*)-7c について、1 nM—10 μ M の濃度において阻害活性の評価を行った(Table 4). (*E*)-2-(2-Alkylcarbamoyl-1-methylvinyl)化合 物((*E*)-4a, b', d, f, v, y)がhBLT₂ 選択的な阻害 活性を示した. その中で最も強い阻害活性が認めら れた (*E*)-4v は、hBLT₁ よりもhBLT₂ を強く阻害 し、hBLT₂ においては陽性対照である ZK-158252 よりも強いカルシウム遊離抑制作用を示した. 一方、 (*E*)-4-(2-alkylcarbamoyl-1-methylvinyl)化合物((*E*) -7c)はhBLT₁, hBLT₂ 両受容体に対して強いカル シウム遊離抑制作用が認められた(Fig. 7).

2-Alkylcarbamoyl-1-methylvinyl 基の構造と,阻 害活性の関連について検討した.窒素上にモルホル ノ基,ジエチル基を有する化合物は強い阻害活性を 有し,これらの中で特に,7位に1-フェニルエト キシ,又は3-カルボキシプロポキシ基を有する化 合物は,さらに阻害活性が向上する傾向が認められ た.

さらに、hBLT₁, hBLT₂ 受容体選択性と 2-alkylcarbamoyl-1-methylvinyl 基の立体的な構造の関連 について検討した. 先に示した NOE 相関結果よ り、(*E*)-4の2位の2-alkylcarbamoyl-1-methylvinyl 基が benzo[*b*] furan とほぼ同一平面に存在するの

$Compd^{(l)}$ (10 m)	Inhibition (%)		
	CHO-hBLT ₁	CHO-hBLT ₂	
4a	21.9	88.1	
4b' ^{<i>a</i>)}	35.8	71.7	
4e ^{<i>a</i>)}	1.7	6.6	
4d	41.3	89.3	
4d'	16.5	71.8	
4e	22.1	83.9	
4f ^{<i>a</i>)}	24.1	72.1	
4g	9.0	70.2	
4n'	7.4	4.1	
4u	7.0	34.6	
4v	69.9	com. ^{b)}	
4 w	n.i. ^{<i>c</i>)}	5.0	
4 y	53.0	84.5	
4z	8.6	53.6	
(Z) -4a	9.2	34.4	
(Z) -4v	8.4 ^{<i>d</i>})	10.8 ^{d)}	
7a	8.1	33.3	
7c ^{<i>a</i>)}	92.6	92.8	
7d	10.8	29.7	
7g	8.4	21.0	
7i	12.6	9.3	
7j	20.9	53.8	
7n	19.2	33.3	
8b	5.7	4.4	
12c	8.0	4.8	
ZK158252 ^{a)}	92.3	92.7	
ZK158252 ^{a)}	56.6	61.3	

Table 3. Inhibition of Calcium Mobilization in CHO-hBLT₁ and CHO-hBLT₂ Cell at 300 nm LTB₄

a) Concentration of LTB₄: 100 nm. *b*) Calcium mobilization was completely inhibited. *c*) Not inhibited. *d*) Concentration of (*Z*) -4v: 5μ M. *e*) Compounds without indication of (*Z*) are (*E*)-isomers.

Table 4. IC₅₀ for CHO-hBLT₁ and CHO-hBLT₂

Commit	IC ₅₀ (µм)		
Compa	CHO-hBLT ₁	CHO-hBLT ₂	
(E) -4 $a^{a)}$	_	4.84	
(E) -4d $^{a)}$	_	1.78	
(E) -4 $\mathbf{y}^{a)}$	>10 ⁻⁵	7.97	
(E) -4 $\mathbf{v}^{a)}$	2.88	0.68	
ZK158252 ^{a)}	1.70	1.18	
(E) -4b' ^{b)}	>10 ⁻⁵	6.41	
(E) -4 $\mathbf{f}^{b)}$	>10 ⁻⁵	0.83	
(E) -7 $\mathbf{c}^{b)}$	0.42	0.48	
ZK158252 ^{b)}	0.054	0.031	

a) Stimulated by LTB_4 at 300 nm. b) Stimulated by LTB_4 at 100 nm.

に対して, (*E*)-7の4位の2-alkylcarbamoyl-1-methylvinyl 基は, benzo[*b*] furan 平面と約46°の角度に 存在することが確認されている.2位置換体((*E*)-4)がhBLT₂を選択的に阻害するのに対して,4位 置換体((*E*)-7)がhBLT₁,hBLT₂両受容体を阻害 することから,2-alkylcarbamoyl-1-methylvinyl 基の 立体的な構造の違いが受容体の選択性に関与すると 考えられる.置換位置に起因するコンフォメーショ ンの変化が2種の受容体への異なった選択性を示したことは、創薬化学研究上興味深い結果である.

強い阻害活性を示した((*E*)-4a, b', d, f, v, y, (*E*) -7c)は cysteinyl leukotriene 受容体について拮抗活性の評価⁶⁹⁾を行ったが,拮抗活性は認められなかった.したがって,これら化合物は LTB4 受容体選択性に優れていると考えられる.さらに,これらの化合物のカルシウム遊離抑制活性が細胞毒性に起因するものではないことを確認するために,ATP 依存性カルシウム遊離に対する抑制効果を評価した.10 μ M においては、カルシウム遊離抑制がわずかに認められたが、1 μ M において抑制作用は認められなかった.したがって、細胞毒性に起因するカルシウム遊離抑制ではないことが確認された.

5. おわりに

LTB₄ 受容体拮抗活性を指向した benzo [b] furan 誘導体の合成を行い、強い LTB4 受容体阻害活性を 有する化合物を見出した. さらに、これら合成化合 物のコンフォメーションが、hBLT₁,hBLT₂ 受容体 阻害活性の選択性と関連することが明らかとなっ た. 最も強い阻害活性を示した (E)-4v, -7c は, そ れぞれ 2 位又は 4 位に同一の (*E*)-(2-diethylcarbamoyl-1-methylvinyl) 基を持ち、両化合物ともに、 7位に1-フェニルエトキシ基を有している.した がって、 (E) - (2-diethylcarbamoyl-1-methylvinyl) 基の置換位置の異なりに起因するコンフォメーショ ンの差が hBLT₁, hBLT₂ 受容体選択的阻害活性に関 与していると考えることができる. (E)-(2-Diethylcarbamoyl-1-methylvinyl) 基のコンフォメーション と hBLT₁, hBLT₂ 受容体選択的阻害活性の関係につ いてさらに検討するために、(E)-(2-diethylcarbamoyl-1-methylvinyl) 基のコンフォメーションが 制御された新規な benzo [b] furan 誘導体を合成 し、阻害活性の評価を進めている.

謝辞 本研究の遂行にあたりご指導とご鞭撻を 賜りました武庫川女子大学薬学部大石義孝教授に心 より感謝申し上げます. X 線結晶解析を行ってい ただきました京都薬科大学太田俊作教授,山下正行 助教授,LTB4 受容体阻害活性測定をご指導いただ きました京都薬科大学河野茂勝教授,奈邉 健助教 授,BLT1,BLT2 受容体阻害活性を測定していただ きました東京大学大学院医学系研究科横溝岳彦助教 授に感謝いたします.本研究は,主に武庫川女子大 学薬学部薬化学 I 講座において行われたものであ り,多大なご協力をいただきましたスタッフ,修了 生,卒業生,在学生の方々に感謝いたします.

REFERENCES

- Ando K., Tsuji E., Ando Y., Kunitomo J., Yamashita M., Ohta S., Nabe T., Kohno S., Yokomizo T., Shimizu T., Ohishi Y., Org. Biomol. Chem., 2, 3427–3431 (2004).
- Ando K., Tsuji E., Ando Y., Kunitomo J., Kobayashi R., Yokomizo T., Shimizu T., Yamashita M., Ohta S., Nabe T., Kohno S., Ohishi Y., Org. Biomol. Chem., 3(11), 2129– 2139 (2005).
- Turner C. R., Breslow R., Conklyn M. J., Andresen C. J., Patterson D. K., Lopez-Anaya A., J. Clin. Invest., 97, 381–387 (1996).
- Sharon P., Stenson W. F., *Gastroenterology*, 86, 453-460 (1984).
- Nakao A., Nasaka K., Ohishi N., Noiri E., Suzuki T., Taniguchi S., *Kidney Int.*, 63 (Suppl) S236-238 (1997).
- Griffiths R. J., Pettipher E. R., Kock K., Farrell C. A., Breslow R., Conklyn M., J. Proc. Natl. Acad. Sci. U.S.A., 92, 517-521 (1995).
- Gladue R. P., Carroll L. A., Milici A. J., Scampoli D. N., Stukenbrok H. A., Pettipher E. R., J. Exp. Med., 183, 1893–1898 (1996).
- Yokomizo T., Kato K., Terawaki K., Izumi T., Shimizu T., J. Exp. Med., 192, 421–431 (2000).
- Reiter L. A., Koch K., Piscopio A. D., Showell H. J., Alpert R., Biggers M. S., Chambers R. J., Conklyn M. J., Cooper K., Cortina S. R., Dibrino J. N., Dominy B. W., Farrell C. A., Hingorani G. P., Martinelli G. J., Ramchandani M., Wright K. F., *Bioorg. Med. Chem. Lett.*, 8, 1781–1786 (1998).
- Koch K., Melvin Jr. L. S., Reiter L. A., Biggers M. S., Showell H. J., Griffiths R. J., Pettipher E. R., Cheng J. B., Milici A. J., Breslow R., J. Med. Chem., 37, 3197–3199 (1994).
- Gapinski D. M., Mallett B. E., Froelich L. L., Jackson W. T., J. Med. Chem., 33, 2807–2813 (1999).
- 12) Jackson W. T., Boyd R. J., Froelich L. L., Gapinski D. M., Mallett B. E., Sawyer J. S.,

J. Med. Chem., 36, 1726–1734 (1993).

- Herron D. K., Goodson T., Bollinger N. G., Swanson-Bean D., Wright I. G., Staten G. S., Thompson A. R., Froelich L. L., Jackson W. T., J. Med. Chem., 35, 1818–1828 (1992).
- Sawyer J. S., Bach N. J., Baker S. R., Baldwin R. F., Borromeo P. S., Cockerham S. L., Fleisch J. H., Floreancig P., Froelich L. L., Jackson W. T., *J. Med. Chem.*, 38, 4411–4432 (1995).
- Kishikawa K., Nakao S., Matsumoto S., Kondo K., Hamanaka N., Adv. Prostaglandin Thromboxane Leukot. Res., 23, 279–281 (1995).
- 16) Kishikawa K., Tateishi N., Maruyama T., Seo R., Toda M., Miyamoto T., *Prostaglandins*, 44, 261–275 (1992).
- Pallavi R. D., Abdelmadjid K. H., Mai P., Wolf-Dieter D. S., Bruce M. S., Walter W., J. Biol. Chem., 274, 23341–23348 (1999).
- Matousek M., Mitsube K., Mikuni M., Brannstrom M., Mol. Hum. Reprod., 7, 35–42 (2001).
- Poudrel J.-M., Hullot P., Vidal J.-P., Girard J.-P., Rossi J.-C., Muller A., Bonne C., Bezuglov V., Serkov I., Renard P., Pfeiffer B., J. Med. Chem., 42, 5289–5310 (1999).
- Birke F. W., Meade C. J., Anderskewitz R., Speck G. A., Jennewein H.-M., *J. Pharmacol. Exp. Ther.*, 297, 458–466 (2002).
- 21) Philip M., Scott S. J., Larry F. L., Larry M. L., Stephen S. M., *Biochem. Pharmacol.*, 49, 1683–1690 (1995).
- Brink C., Dahlen S.-E, Evans J. F., Hay D.
 W. P., Nicosia S., Serhan C. N., Shimizu T., Yokomizo T., *Pharmacol. Rev.*, 55, 195–227 (2003).
- 23) Toba A., Yokomizo T., Shimizu T., Prostaglandins Other Lipid Mediators, 68–69, 575–585 (2002).
- 24) Yokomizo T., Masuda K., Toda K., Izumi T., Shimizu T., Am. J. Respir. Crit. Care Med., 161, S51-55 (2000).
- 25) Yokomizo T., Izumi T., Shimizu T., Arch. Biochem. Biophys., 385, 231–241 (2001).
- 26) Yokomizo T., Kato K., Terawaki K., Izumi T., Shimizu T., *J. Exp. Med.*, 192, 421–431 (2000).
- 27) Aiello R. J., Bourassa P. A., Lindsey S.,

Weng W., Freeman A., Showell H. J., Arterioscler. Thromb. Vasc. Biol., 22, 443–449 (2002).

- Mennander A., Tiisala S., Ustinov J., Räisänen A., Paavonen T., Häyry P., Arterioscler. Thromb., 12, 1380–1386 (1992).
- 29) Takatsuka H., Takemoto Y., Yamada S., Wakae T., Mori A., Okada M., Iwata N., Okamoto T., *Drugs Exp. Clin. Res.*, 28, 121– 125 (2002).
- Tanaka M., Tamaki T., Konoeda Y., Uchida Y., Kaizu T., Kawamura A., *Transplant. Proc.*, 32, 2340 (2000).
- Iversen L., Kragballe K., Ziboh V. A., Skin Pharmacol., 10, 169–177 (1997).
- 32) Tong W.-G., Ding X.-Z., Hennig R., Witt R.
 C., Standop J., Pour P. M., Adrian T. E., *Clin. Cancer Res.*, 8, 3232–3242 (2002).
- 33) Yoo M.-H., Song H., Woo C.-H., Kim H., Kim J.- H., Oncogene, 23, 9259–9268 (2004).
- 34) Kurihara Y., Endo H., Akahoshi T., Kondo H., *Clin. Exp. Immunol.*, **123**, 323–330 (2001).
- Hashimoto A., Endo H., Hayashi I., Murakami Y., Kitasato H., Kono S., Matsui T., Tanaka S., Nishimura A., Urabe K., Itoman M., Kondo H., J. Rheumatol., 30, 1712–1718 (2003).
- Murakami Y., Akahoshi T., Hayashi I., Endo H., Hashimoto A., Kono S., Kondo H., Kawai S., Inoue M., Kitasato H., *Arthritis Rheum.*, 48, 2931–2941 (2003).
- 37) Alten R., Gromnica-Ihle E., Pohl C., Emmerich J., Steffgen J., Roscher R., Sigmund R., Schmolke B., Steinmann G., *Ann. Rheum. Dis.*, 63, 170–176 (2004).
- 38) Delorme D., Ducharme Y., Brideau C., Chan C.-C., Chauret N., Desmarais S., Dube D., Falgueyret J.-P., Relean R., J. Med. Chem., 39, 3951–3970 (1996). (L 708780, naphthalene derivative with furan ring).
- 39) Djuric S. W., Docter S. H., Yu S. S., Spangler D., Tsai B. S., Anglin C. P., Gaginella T. S., Kachur J. F., Keith R. H., *Bioorg. Med. Chem. Lett.*, 4, 811–816 (1994). (SC-53228, benzopyran derivative).
- Djuric S. W., Collins P. W., Jones P. T., Shone R. L., Tsai B. S., Fretland D. J., Butchko G. M., Villani-Prince D., Keith R.

H., J. Med. Chem., **32**, 1145–1147 (1989). (SC 41939, benzopyran derivative).

- 41) Shoupe T. S., Coutts S. M., Baker D. C., Hand E. S., Can. Pat. Appl. (1991) 63pp. CPXXEB CA 2013960, AA 19910319, CAN 115: 158949, AN 1991: 558949. (PF 10042, dibenzofuran derivative).
- Wright C. D., Kuipers P. J., Hoffman M. D., Thueson D. O., Conroy M. C., *Biochem. Biophy. Res. Comm.*, 167, 828–834 (1990). (CI 949, indole derivative).
- 43) Musser J. M., Chakraborty U. R., Sciortino S., Gordon R. J., Khandwala A., Neiss E. S., Pruss T. P., Inwegen R. V., Weinryb I., Coutts S. M., J. Med. Chem., 30, 96-104 (1997). (PF 5901, quinoline derivative).
- 44) Can C., Cinar M. G., Ulker S., Evinc A., Kosay S., *Eur. J. Pharmacol.*, 350, 223–228 (1998). (MK 886, indole derivative).
- 45) Poudrel J. M., Hullot P., Vidal J. P., Girard J. P., Rossi J. C., Muller A., Bonne C., Bioorg. Med. Chem. Lett., 6, 2349-2354 (1996).
- 46) Nakai H., Konno M., Kosuge S., Sakuyama S., Toda M., Arai Y., Obata T., Katsube N., Miyamoto T., Okegawa T., Kawasaki A., J. Med. Chem., 31, 84–91 (1988).
- 47) Tsuji E., Ando K., Kunitomo J., Yamashita M., Ohta S., Kohno S., Ohishi Y., Org. Biomol. Chem., 1, 3139–3141 (2003).
- 48) Ando K., Tsuji E., Ando Y., Kuwata N., Kunitomo J., Yamashita M., Ohta S., Kohno S., Ohishi Y., Org. Biomol. Chem., 2, 625– 635 (2004).
- 49) Greenspan P. D., Main A. J., Bhagwat S. S., Barsky L. I., Doti R. A., Eagle A. R., Frey L. M., Zhou H., Lipson K. E., Chin M. H., Jackson R. H., Uziel-Fusi S., *Bioorg. Med. Chem. Lett.*, 7, 949–954 (1997).
- 50) Greenspan P. D., Fujimoto R. A., Marshall P. J., Raychaudhuri A., Lipson K. E., Zhou H., Doti R. A., Coppa D. V., Zhu L., Pelletier R., Uziel-Fusi S., Jackson R. H., Chin M. H., Kotyuk B. L., Fitt J. J., *J. Med. Chem.*, 42, 164–172 (1999).
- 51) Boutagy J., Thomas R., Chem. Rev., 74, 87– 99 (1974).

- 52) Matsuura N., Yashiki Y., Nakashima S., Maeda M., Sasaki S., *Heterocycles*, **51**, 975–978 (1999).
- 53) Geirsson J. K. F., Gudmundsson B. Ö., Sigurdardottir R., Acta Chem. Scand., 47, 1112– 1116 (1993).
- 54) Watanabe M., Hisamatsu S., Hotokezaka H., Furukawa S., *Chem, Pharm. Bull.*, 34, 2810– 2820 (1986).
- 55) Sano S., Yakugaku Zasshi, **120**, 432–444 (2000).
- 56) Blanchette M. A., Choy W., Davis J. T., Essenfeld A. P., Masamune S., Roush W. R., Sakai T., *Tetrahedron Lett.*, 25, 2183–2186 (1984).
- 57) Nets D. F., Seidel J. L., *Tetrahedron Lett.*, 33, 1957–1958 (1992).
- 58) Ando K., J. Org. Chem., 62, 1934–1939 (1997).
- 59) Ando K., Tetrahedron Lett., 36, 4105–4108 (1995).
- 60) Still W. C., Gennari C., *Tetrahedron Lett.*, 24, 4405–4408 (1983).
- Heck F. R., "Organic Reactions, Vol. 27," John Wiley & Sons Publishers, New York, 1982, pp. 345–390.
- 62) Ohishi Y., Mukai T., Nagahara M., Yajima M., Kajikawa N., *Chem. Pharm. Bull.*, 37, 2393–2405 (1989).
- 63) Adams R., Miller M. W., J. Am. Chem. Soc.,
 62, 53-57 (1940).
- 64) Mills W. H., Dazeley G. H., J. Chem. Soc., 460-463 (1936).
- 65) Paizs C., Tosa M., Majdik C., Moldovan P., Novak L., Kolonits P., Marcovici A., Irimie F.-D., Poppe L., *Tetrahedron: Asymmetry*, 14, 1495–1501 (2000).
- 66) Bachelet J. P., Demerseman P., Royer R., Cavier R., Lemoine J., *Eur. J. Med. Chem.*, 17, 323–325 (1982).
- 67) Nabe T., Yamamura H., Kohno S., Jpn. J.
 Pharmacol., 70, 337–345 (1996).
- 68) Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T., Nature, 387, 620–624 (1997).
- 69) Nothacker H.-P., Wang Z., Zhu Y., Reinscheid R. K., Lin S. H. S., Civelli O., *Mol. Pharmacol.*, 58, 1601–1608 (2000).