-Reviews-

新しい固相遷移金属触媒の創製と有機合成反応への応用

山田陽一

Development of Novel Solid-phase Polymeric Catalysts for Organic Syntheses

Yoichi M. A. YAMADA

Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8787, Japan

(Received June 23, 2005)

Highly active and reusable polymeric catalysts were produced by a self-assembly process of non-cross-linked amphiphilic polymeric ligands with inorganic species. Thus a new insoluble tungsten polymeric catalyst PWAA 1 was prepared from $H_3PW_{12}O_{40}$ and poly [(*N*-isopropylacrylamide)-*co*- (acrylamide with ammonium salt)], which was suitable for the oxidation of alcohols, amines, and sulfides in aqueous hydrogen peroxide. A new insoluble palladium polymeric catalyst PdAS 2 was produced by self-organization of (NH₄)₂PdCl₄ and poly [(*N*-isopropylacrylamide)₁₀-*co*-diphenyl-phosphinostyrene], which is an excellent recyclable catalyst for the Suzuki-Miyaura reaction in water, water-organic solvents, and organic solvents. It is commercially available from Tokyo Kasei Kogyo (TCI). An improved insoluble palladium polymeric catalyst PdAS–V 3 was assembled from (NH₄)₂PdCl₄ and poly [(*N*-isopropylacrylamide)₅-co-diphenylphosphinostyrene], providing a reusable system for the Mizorogi-Heck reaction. A solid-phase titanium asymmetric polymeric catalyst TiSS 4 was made from Ti (O-*i*-Pr)₄ and poly (styryl-linked binaphtholate-*co*-styrene) which promotes an enantioselective carbonyl-ene reaction as a recyclable catalyst.

Key words—immobilized polymeric catalyst; reusable solid-phase catalyst; self-assembly; tungsten; palladium; titanium

1. はじめに

金属固相触媒の開発は近年の有機合成化学,プロ セス化学において重要なものとなっている.¹⁻⁹⁾理 論上この触媒系では、ろ過などの簡便な操作により 触媒の回収、再利用が可能で反応生成物の単離が容 易になり、金属の生成物への混入も回避でき得るこ とから、医薬品合成等の化学プロセス、コンビナト リアル合成への適用が期待されている.これまで に、架橋ポリスチレンなどの高分子樹脂やシリカゲ ル、酸化金属などの不溶性担体に均一系金属触媒が 担持された様々な金属固相触媒の開発が行われてき た(Scheme 1 上).例えば架橋ポリスチレンはスチ レンとジビニルベンゼンの共重合から調製される粒 径数 10 から数 100 μm の樹脂であり、ファインケ ミカル、医薬品プロセスにおける回収再利用可能な 触媒開発を目的として、官能基が導入された架橋ポ リスチレン樹脂に金属部位が担持された固相触媒が 開発されてきた.固相触媒を用いることで,高価な 金属錯体の再利用,生成物の容易な分離,金属への 浸出の回避が理論的には可能となるが,現実には低 い触媒活性,金属の浸出,触媒の再利用が困難,反 応溶媒として毒性を有するハロゲン系溶媒をする必 要があるといった問題を有していた.^{10—15)}1990年 代にコンビナトリアル合成でのライブラリー構築に 固相触媒が利用され始めるとこの領域での新機軸が 登場し,修飾ポリスチレン担持型遷移金属触媒を始 めとした新しいタイプの触媒が開発され固相触媒の 化学が発展期を迎えている.ようやく実用性の観点 から固相触媒が議論されるようになってきたという のがここ数年の固相担持遷移金属触媒化学の現状で ある.

このような現状を踏まえ,筆者らは新たな概念を 基盤とした固相触媒の開発が学術的,実用的両観点 から重要であると考えた.すなわち,上述の固相担 体に金属部位を担持する方法論と異なる固相触媒の 調製法の確立が学術的に必要であると考え,そのコ

分子科学研究所 (〒444-8787 岡崎市明大寺町東山 5-1) e-mail: yyamada@ims.ac.jp

本総説は、平成17年度日本薬学会奨励賞の受賞を記念 して記述したものである。

Scheme 1. Hypothesis of Formation of a Self-assembled Complex for an Insoluble Oxidation Catalyst

ンセプトを具現化することにより極めて高活性で再 利用可能な実用性のある固相触媒が開発できるので はないか, との作業仮説を立てた. その方法論は, 触媒活性部位となる金属化合物と非架橋両親媒性高 分子配位子との自己集合により架橋型不溶性超分子 錯体を生成させ, これを固相触媒に適用するという ものである (Scheme 1 下). この方法論の概要は次 の通りである.

非架橋型両親媒性高分子配位子同士の、金属
 一配位子結合を介した架橋形成による不溶性超分子
 錯体の生成

2) 多数生成した両親媒性の網目状超分子構造の 中での基質、試薬両方の効果的な濃縮(高分子効果)

3)網目内に存在する触媒部位の近傍に高濃度で 存在する基質,試薬との効率的な反応

4) 熱力学的に安定なマトリックス構造を有する 触媒の必要に応じた解離,反応,再超分子化

この作業仮説の下,配位子を導入した両親媒性高 分子ポリ N-イソプロピルアクリルアミド(PNIPAA) 鎖状共重合体を用い,高分子と金属部の自己集合に よる超分子化での不溶性固相触媒調製を目指した分 子設計を行った.

その結果,筆者らは,新規固相タングステン触媒 PWAA (poly $\{PW_{12}O_{40}^{3-}[(N-isopropylacrylamide)-co-(acrylamide with ammonium salt)]_3))(1),新規固$ $相パラジウム触媒 PdAS (poly <math>\{PdCl_2[(N-isopropyl$ $acrylamide)_{10}-co-diphenylphosphinostyrene]_2\})(2),$ $PdAS-V (poly <math>\{PdCl_2[(N-isopropylacrylamide)_{5}-co$ $diphenylphosphinostyrene]_2\})(3)の開発とその有$ 機合成反応への応用に成功した.これらの触媒は水,有機溶媒のいかなる反応溶媒中で高い触媒活性を示し,再利用可能であることが明らかとなった.さらにこの触媒調製の方法論は不斉触媒調製にも適用可能であり,新規固相チタン不斉触媒 TiSS (poly(Ti styryl-linked binaphtholate-co-styrene))(4)の

分子科学研究所助手. 1970年東京都生 まれ.東京大学薬学部卒業,同大学院 博士課程修了.帝京大学薬学部助手, スクリプス研究所リサーチアソシエー トを経て 2003年より現職. 1999年大 日本インキ有機合成化学協会研究企画 賞,2000年井上研究奨励賞,2005年日 本薬学会奨励賞を受賞. 開発とその不斉反応への展開を図ることができた. 以下にその詳細を記載する.¹⁶⁻²³⁾

2. 新規固相タングステン触媒 PWAA の創製と 過酸化水素水中での酸化反応

2-1. 固相タングステン触媒 PWAA の調製 PWAAはScheme2に示したように、アンモニウ ム塩5は市販の*N*-[3-(dimethylamino) propyl] acrylamide と 1-bromododecane から収率 92% で調 製された.アンモニウム塩5と12当量のNisopropylacrylamide (6) との共重合は4 モル%の AIBN 存在下 t-BuOH 中 75 度 48 時間行うことによ り完結し、非架橋型高分子 7-Br が生成した、この 高分子 7-Br の臭化物イオンは硝酸イオンに変換さ れ, 7-NO3 が得られた.²⁴⁾ これは両親媒性を示し, t-BuOH、塩化メチレン、水に可溶であった. また この高分子内での N-isopropylacrylamide 部位とア ンモニウム塩部位の導入比は¹H NMR の測定によ り再現性よく 12/1 であった. 得られた 7-NO₃ とリ ンタングステン酸(8)との錯体形成は [π-C₅H₅N (CH₂)₁₅CH₃]₃PW₁₂O₄₀²⁵⁾の調製法を参考にして行 った. すなわち8と7-NO3 (アンモニウム塩として 3当量)との自己集合を室温下水中にて7日間行う ことで不溶性白色沈殿物が生成し、これを水で洗浄 することで PWAA1を白色粉体として得た. PWAA1は水、メタノール、エタノール、2-プロ パノール、アセトン、酢酸エチル、塩化メチレン、 トルエン、エーテル、ヘキサンに対し不溶性を示し た. 対照実験として poly (N-isopropylacrylamide)

と8との反応を行ったが全く沈殿物が生成しなかった.この結果は、7のアンモニウム塩がホスホタン グステン酸を介して架橋されていることを意味している.さらに PWAA の構造を明らかにすべく分光 学的測定を行った.元素分析の結果 PWAA 1 ユニ ット当たり 22H₂O を含んだ構造であること、そして IR 測定、ゲルフェーズ³¹P NMR の測定 (Fig. 1) から PW₁₂O³の構造 (Keggin structure) が導入され ていることが明らかとなった.^{26–29)} また SEM での 観察により、PWAA が直径数 100 nm のメゾ孔を 多数有する多孔質であることが判った (Fig. 2).

2-2. PWAA を固相触媒としたアリルアルコールのエポキシ化 PWAA が得られたことから, これを固相触媒したアルコールのエポキシ化を有機 溶媒非存在下,過酸化水素水を酸化剤かつ溶媒とし て室温中検討した.³⁰⁻⁴²⁾本触媒は非常に高活性で あり,2.7×10⁻⁵ モル当量の1,2 モル当量の30%過 酸化水素水存在下 phytol (9a)の酸化に付したとこ ろ,対応するエポキシアルコール 10a を収率94% で得た (Scheme 3). このときの触媒回転数は 35000 に達しており,今までに報告されている触媒 に比べ高い触媒回転能を有することが明らかとなっ た.

様々なアリルアルコールを基質としたエポキシ化の結果を Table 1 に示す. 触媒量 5.0×10⁻⁴ モル当量(500 ppm)の1を用いて検討したところ,3置換アリルアルコールについては、収率よくエポキシアルコール体 10a-e が生成することを見い出した

Scheme 2. Preparation of PWAA 1

Fig. 1. A Gel-phase ³¹P-NMR Chart of PWAA

Fig. 2. Scanning Electron Micrographs (SEM) of PWAA (left) scale bar: 10 μm, (center) scale bar: 500 nm, (right) scale bar: 100 nm.

Scheme 3. Epoxidation of Phytol (9a) Promoted by PWAA

(entries 1-5). 長鎖脂肪族を有する phytol (9a)の 酸化では, 10a の収率は 96% であり (entry 1), Farnesol (9b) での反応は非修飾オレフィン存在下アリ ルアルコール部位のみが選択的に反応し, 10b が収 率 84%で得られた (entry 2). これに対し geraniol (9c)を用いた場合,エポキシドの開環が起こり 10cの収率が大幅に低下した.検討の結果, 6.0× 10⁻³ モル当量のピリジンを添加することにより, 収率が向上し 80%で 10c を得た (entry 3).⁴³⁾他の 3 置換アリルアルコール 9d,e においてもピリジン の添加により収率よく成績体 10d,e が生成した (entries 4 and 5).

同様に2置換アリルアルコール9f,gでも,ピリ ジン存在下1を2.0×10⁻³モル用いることにより定 量的にエポキシアルコール体10f,gが与えられた

	R ¹ R ² R ² R ⁴ 9	F (+p 30% H ₂ O	PWAA pyridine) ₂ aq (2 mol eq) rt	$\begin{array}{c} \bullet \\ R^{1} \\ R^{2} \\ R^{2} \\ 10 \end{array}$	OH R⁴	
Entry	Substrate		PWWA 1 (mol eq.)	Pyridine (mol eq.)	Time (h)	Yield (%) ^{a)}
1		9 а ОН	5.0×10 ⁻⁴	_	7	10a : 96
2	С	9b	5.0×10 ⁻⁴	_	13	10b : 84
3	СН	9c	5.0×10 ⁻⁴	6.0×10 ⁻³	15	10c: 80
4	ОН	9d	5.0×10 ⁻⁴	6.0×10 ⁻³	12	10d : 83
5	Рһ	9e	5.0×10 ⁻⁴	6.0×10 ⁻³	13	10e : 96
6	Ph	9f	2.0×10 ⁻³	9.6×10 ⁻²	30	10f: quant
7	C ₈ H ₁₇ OH	9g	2.0×10 ⁻³	2.4×10^{-2}	33	10g: quant
8	n-Bu	9h	2.0×10 ⁻³	9.6×10 ⁻²	85	10h: 73 (threo : erythro=91 : 9)

Table 1. Epoxidation of Allylic Alcohols Promoted by PWAA

a) Isolated yields.

(entries 6 and 7).

これに対し, 2 級アルコール 9h のジアステレオ 選択的エポキシ化反応では, 長時間を要するがスレ オ:エリスロ=91:9 の選択性で 10h に変換された (entry 8).⁴⁴⁾ なお反応中における触媒活性種が固相 触媒 1 であり, 1 の分解物若しくは浸出化合物が反 応系に関与していないことが確認されている.

また Schemes 4 と 5 のように様々なオレフィン存 在下,アリルアルコールのみが選択的に酸化される ことも明らかとなり,さらに1は再利用可能である ことが示された (Scheme 6).

2-3. PWAA を固相触媒とした 2 級アミンの酸 化によるニトロンの合成 次に PWAA の多様性 を提示するために 2 級アミンの酸化によるニトロン 合成に本触媒系を適用した.⁴⁵⁻⁵⁶⁾ ニトロンは様々 な生物活性物質の合成に用いられており、アミンか らの直接的合成法の開発は重要な研究課題である. Table 2 に示す通り、2×10⁻³ モル当量の PWAA を 用いて様々な置換ジベンジルアミン 11a-gを基質 とした酸化反応を 2.5%過酸化水素水⁵⁷⁾を酸化剤並 びに溶媒として行ったところ、対応するニトロン 12a-g を良好な収率で得た. このときの触媒回転 数は 450 程度である.非対称アミン 11e-g を用い

たレジオ選択的酸化反応を検討したところ,より酸 性プロトンを有するベンジル位で反応が優先的に進 行するものの,その選択性は低いものであった.⁵⁸⁾ 一方環状アミン 11i を用いた場合,選択的に 12i が 収率 70%で生成した.

2-4. PWAA を固相触媒としたスルフィドの酸 化によるスルホンの合成 PWAA を, 医薬品, 生理活性物質の合成シントンとして有用なスルフィ ドの酸化に適用した(Table 3).⁵⁹⁻⁶⁷⁾ カッコ内に示 した通り, 無触媒でも反応は進行するものの, その 速度は遅く, 低収率でスルホキシド 14 が生成する に留まる(Entries 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22).⁶⁸⁾ それに対し, PWAA を 2×10⁻³ モル当 量用いることで有機溶媒非存在下過酸化水素水を酸

1st use: 96%; 2nd use: 93%; 3rd use: 97% (isolated yields)

Scheme 6. Epoxidation of Phytol (9a) Catalyzed by Recycled PWAA

化剤及び溶媒としたスルフィドの酸化は効率的に進行し,所望のスルホン15を高い収率で得ることに成功した(Entries 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21).特にベンゾチアゾール環(Entry 11),⁶⁹⁾アルデヒドホルミル基(Entry 13),オレフィン(Entry 15),ヒドロキシル基(Entry 17)のような酸化の影響の受け易い官能基存在下,選択的にスルフィドの酸化が進行した.またプロスタグランジン関連物質合成の有用な15j^{70,71)}の合成では酸性条件で脱保護されるアセタールも本反応条件に影響しない(Entry 19).

13a の酸化反応にて本触媒の再利用実験を行った (Scheme 7). 1回目の反応にて 97%の収率で 14a が生成したものの、2回目以降 80%台の一定の収率 で 14a が得られた. これは再利用時において触媒が 微粉化するとともに反応容器に触媒が吸着すること で攪拌効率が低下し反応効率が下がったことに起因 すると考察している.利用前,再利用後の PWAA をゲルフェーズ³¹P NMR を測定したときに相違は 観測されなかったことから,触媒分解はないものと 考えている.⁷²⁾ これは今後解決すべき課題である.

一方, PWAA は水, 有機溶媒の両者に不溶であ る特性を活用すべく, 水 (過酸化水素水)一有機溶 媒混合系での反応を検討した (Table 4). その結

				2×10 ⁻³ mol eq)		$R^2 + R^1 $	
		K N H	2.5% H ₂ C r	l₂ <i>aq</i> (3 mol eq) t, 24 h	0	Ŏ	
		11			12	12'	
Entry	Amines	R ¹	R ²	Temp (°C)	Time(h)	Nitrone	Yield (%) ^{<i>a</i>)}
1	11a	Ph	Ph	rt	24	12a	86
2	11b	p-CF ₃ -C ₆ H ₄	p-CF ₃ -C ₆ H ₄	rt	24	12b	90
3	11c	p-Cl-C ₆ H ₄	p-Cl-C ₆ H ₄	rt	24	12c	56
4	11d	<i>p</i> -MeO-C ₆ H ₄	<i>p</i> -MeO-C ₆ H ₄	rt	48	12d	62
5	11e	<i>p</i> -MeO-C ₆ H ₄	p-CF ₃ -C ₆ H ₄	rt	24	12e+12e'	94(12e+12e'=1.7/1)
6	11f	Ph	p-CF ₃ -C ₆ H ₄	rt	24	12f + 12f'	80(12f+12f'=1.3/1)
7	11g	Ph	p-CN-C ₆ H ₄	40	24	12g + 12g'	71 ($12g + 12g' = 1.5/1$)
8	11h	(CH ₃) ₃	Ph	rt	24	12h	34
9	11i		NH NH	rt	12		70
10	11j	\square) ZH	rt	12	12j	30

 Table 2.
 Oxidation of Secondary Amines by PWAA

a) Isolated yields.

	PWAA				
٨٣٥	(2x10 ⁻³ mol eq)	> A-80E	о1 т л.	SO ₂ R ¹	
AIC	35-40% aq H ₂ O ₂	- AISUR	C T AI		
13	(4 mol eq)	14		15	
	50 °C, 4 h				
Entry	13	Catalyst	14 (%) ^{a)}	15 (%) ^{a)}	
1 ^{b)}	PhSMe(13a)	PWAA	3	97	
$2^{b)}$	13a		(74)	(26)	
3	p-Me-C ₆ H ₄ SMe (13b)	PWAA	9	90	
4	13b		(71)	(22)	
5	p-Br-C ₆ H ₄ SMe (13c)	PWAA	12	87	
6	13c	—	(70)	(15)	
7	p-MeO-C ₆ H ₄ SMe(13d)	PWAA	6	84	
8	13d		(76)	(24)	
9	PhSEt (13e)	PWAA	3	91	
10	13e		(75)	(17)	
11 ^{c)}	$ \begin{array}{ c } \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	PWAA	17	78	
12 ^{c)}	13f		(9)	(0)	
13	p-CHO-C ₆ H ₄ SMe(13g)	PWAA		86	
14	13g	—	(53)	(33)	
$15^{c)}$	PhS (13h)	PWAA	3	81	
16 ^{c)}	13h	_	(80)	(10)	
17	PhS OH (13i)	PWAA		quant	
18	13i		(80)	(13)	
19	$\overset{O}{\underset{\text{PhS}}{\longrightarrow}}(13j)$	PWAA	11	71	
20	13j	_	(54)	(trace)	
21	PhSPh (13k)	PWAA	10	6	
22	13k		4	(0)	

Table 3. Oxidation of Sulfides to Sulfones with and without PWAA

The yields of the oxidations without PWAA were in parentheses. a) Isolated yields. b) 3 mol eq. of H_2O_2 was used. c) The reaction was performed for 7 h.

Table 4. Solvent Effect on the Oxidation Catalyzed by PWAA

420 -	PWAA (2.0x10 ⁻³ n	nol eq)	a . 45a
158	30% H ₂ O ₂ aq, 50	°C,4h ^{- 14}	a T IJa
	solvent (1.0M soln	of 13a)	
Entry	Solvent	12a ^{<i>a</i>)}	13a ^{<i>a</i>)}
1	—(neat)	3	97
2	Toluene	3	75
3	CH_2Cl_2	8	90
4	THF	8	91
5	Et ₂ O		96
6	DMF	_	100
7	EtOH	—	99

a) Isolated yields.

	PWAA (2.0x10 ⁻³ mol eq)
	(reuse)	
PhSMe	aq H ₂ O ₂	PhSO ₂ Me
(13a)	50 °C, 4 h	(14 a)
1st use: 4th use:	97%; 2nd use: 86%; 3rd t 88%; 5th use: 82% (isolate	use: 83% ed yields)

Scheme 7. Oxidation of 11a Catalyzed by Recycled PWAA

果、トルエン混合溶媒系で反応性が低下したものの (Entry 2)、塩化メチレン、テトラヒドロフラン、 エーテル、ジメチルホルムアミド、エタノール混合 溶媒系においてほぼ定量的に 13a が得られ、 PWAA が有機溶媒存在下で機能することが明らか になった。

3. 新規固相パラジウム触媒 PdAS の創製と鈴木 -宮浦反応への応用

3-1. 固相パラジウム触媒 PdAS の調製 この ように我々の方法論による固相触媒調製法が有効で あることが見出されたので、次に本手法を固相パラ ジウム触媒創製に適用した. 触媒活性部位として (NH₄)₂PdCl₄(18), 配位子としてアリールホスフ ィンを有する非架橋型両親媒性高分子 poly (Nisopropylacrylamide) 17 を用いた自己集合プロセス により新規パラジウム固相触媒 PdAS 2 の開発に成 功した.^{73,74)} Scheme 8 に示す通り、4-diphenylstyrylphosphine (16) と 12 モル当量の N-isopropylacrylamide(6)の共重合を AIBN 存在下に付すこ とで17を89%の収率で得た.17におけるアクリル アミド部位とホスフィン部位の導入比は再現性よく 10 対1 であり、ホスフィンはほとんど酸化されず に17が単離された.17と18との自己集合は PdCl₂(PPh₃)₂の調製法を参照して検討した.⁷⁵⁾その 結果,ホスフィン部位として3モル当量の17の THF 溶液と18の水溶液を混合し、室温下 62 時間 攪拌後,精製することで濃赤色不溶性超分子錯体 PdAS 2 が得られた. この錯体は水, メタノール, アセトン、塩化メチレン、酢酸エチル、THF 並び にヘキサンに不溶性を示すことを確認している.

本触媒の構造情報を得るためにゲルフェーズ³¹P NMRの測定を行ったところ2価パラジウムに結合 したホスフィンと帰属できるピークが確認された. 一方,ホスフィンが存在しない poly(*N*-isopro-

Scheme 8. Preparation of an Assembled Catalyst PdAS for the Suzuki-Miyaura Reaction and Its Working Model

Table 5.	The Heterogeneous	Suzuki-Miyaura	Reaction of	Iodobenzene	(19a)	with Phe	enylboronic	Acid
(20a) (Catalyzed by 5×10^{-5}	Mol Eq. of the I	Recycled Cata	lyst PdAS				

	H + B(OH) ₂ 19a 20a (1.1 mol eq)	PdAS (5.0 x 10^{-5} mol eq) (1st-10th use) Na ₂ CO ₃ (1.11 mol eq) H ₂ O, 100 °C, 24 h	21a
Entry	Catalyst (cycle)	Yield ^{a)}	Turnover number (TON)
1	1st cycle	95%	19000
2	10th cycle	93%	18600
3	1st-10th consecutive cycle	ave: 95%	a total of 190000

a) Isolated by crystallization under organic solvent-free conditions.

pylacrylamide) と 18 との錯体形成により沈殿物が 生成しなかった.以上のことから, Scheme 8 に示 したようにパラジウム (II) がホスフィンを介して 高分子同士を架橋していることが確認された.

3-2. 固相パラジウム触媒 PdAS の鈴木-宮浦反応における触媒活性 非均一系での鈴木-宮浦反

応における PdAS の触媒活性を確認した(Table 5).⁷⁶⁻⁸⁹⁾ 水は安価で安全で無毒な溶媒として近年注目されているものの,^{90,91)} その利用は困難にしばしば直面していた.しかしながら PdAS の両親媒性の効果が鍵となり本触媒系においても水の使用が可能であると予見し, Tables 5-7 及び Scheme 9 で

Scheme 9. The Heterogeneous Suzuki-Miyaura Reaction Catalyzed by 8.0×10^{-7} Mol Eq. of PdAS

Table 6. The Heterogeneous Suzuki-Miyaura Reaction of Aryl Iodides, Bromides and Triflate with Arylboronic Acids Catalyzed by PdAS

	6 ¹ D	PdAs (entries 1	S (5.0 x 10 ⁻⁴ mol eq) and 2: 5.0 x 10 ⁻⁵ m) oleq)	
	Ar ¹ Br (Ar ¹ I) (Ar ¹ OTf)	(1.1 mol eq)	2CO ₃ (1.11 mol eq) H ₂ O, 100 °C	→ Ar'-Ar	
Entry	Ar ¹ Br (Ar ¹ OTf)	$\operatorname{Ar^{2}B(OH)}_{2}$	Time	Product	Yield
1	PhI 19a	MeOB(OH) ₂ 20b	24 h	MeO-	21b : 97%
2	19a	MeOC	24 h	MeOC	21c : 98%
3	MeOC-Br 22a	20a	24 h	MeOCPh	21d : 98%
4	OHC Br 22b	20a	9 h	OHCPh	21e: 97 %
5	NC Br 22c	20a	9 h	NC Ph	21f : 98%
6	CI-Br 22d	20a	12 h	CI	21g: 94 %
7	Me Br 22e	20a	9 h	Me	21h : 95%
8	MeO-Br 22f	20a	24 h	MeO-	21b : 87%
9	Me-OTf 22g	20a	9 h	Me	21h : 93 %
10	HO Br 22h	20a	4 h (24 h at rt)	HO	21i : 91% (80% at rt)
11	HO ₂ C-Br 22i	20a	4 h	HO ₂ C-	21j : 95%
12	Br 22j	20a	9 h	N_Ph	21k: 99 %
13	22e	20a	9 h	Ме	211: 91%
14	22e	MeS-B(OH) ₂ 20d	9 h	Me	21m : 95%
15	22e	$HOH_2C \longrightarrow B(OH)_2 20e$	9 h	Me-CH ₂ OH	21n: 87%
16	22e	MeOC-B(OH) ₂ 20f	9 h	Ме-	210: 84%
17	CN Br 22k	Me	24 h	CN CN	21p: 93%

は有機溶媒を使用せず水を反応溶媒として使用した.その結果,Table 5 に示すように iodobenzene (19a)と phenylboronic acid (20a) (1.1 モル当量)との反応を 5×10⁻⁵ モル当量の PdAS を用いて水中で行ったところ,biphenyl (21a)を収率 95%で得ることに成功した.このときの触媒回転数は約 20000 に達した.担体からの触媒活性部位の浸出は大きな問題となるが,⁹²⁾反応後のろ液を用いて同様の反応に付したところ原料のみが回収され,ろ液には全く触媒活性がなかった.したがって,触媒活性はPdAS によるものであることが判明した.⁹³⁾

この反応の後処理も完全に有機溶媒を使用せず水

のみを用いて行うことが可能である. すなわち反応 終了後に熱時ろ過, 引き続き 21a の結晶化を水中に て行うことで PdAS の回収⁹⁴⁾と高純度の 21a の定 量的な単離に成功した.

再利用可能な触媒としての PdAS 2 の活性を確認 するために, Table 5 のように 19a と 20a の反応に て 10 回連続での PdAS の再利用実験を行ったとこ ろ 10 回の PdAS の利用が可能であることを確認し た (Table 5). すなわち, 10 回の利用で PdAS は 合計 190000 回転したことになる. なお, この場合 も有機溶媒を用いることなく水のみで後処理を行っ た.

Table 7.	The Heterogeneous	Suzuki-Miyaura	Reaction of Alkenyl Hal	ides and Alkenylboronic	Acids Catalyzed by PdAS
----------	-------------------	----------------	-------------------------	-------------------------	-------------------------

		D ¹ D,		PdAS ((5.0 x 10 ⁻⁴ mol eq)	D1_D2	
		(R ¹ I)	K B(OH) ₂	Na ₂ C	O ₃ (1.11 mol eq)		
		()	(1.1 mol eq)	ŀ	H₂O, 100 °C		
Entry	Halide		Boronic acid		Time	Product	Yield
1	19a		B(OH)2	23a	9 h	Ph	24a : 91%
2	22a		23a		9 h	MeOC	24b : 86%
3	22a		Ph B(OH) ₂	23b	6 h	MeOC	24c: 82%
4	22c		23b		6 h	NC	24d : 82%
5	OEt	25a	20b		6 h	MeO	24e : 97%
6	Ph Br 25b $(E : Z(10 : Z))$	1))	20b		24 h	Ph	24f : 91%
7	Ph Br	25c	20b		9 h	Ph	24g : 90%
8	25c		20f		9 h	Ph	24h : 92%
9	25b $(E : Z(6 : 1))$		23a		5 h	Phr	24i : 81% (<i>E</i> : <i>Z</i> (5:1))
10 ^{b)}	Br Br	25d	20 b ^{<i>a</i>)}		24 h	OMe OMe	24j : 70%
11 ^{b)}	Br O N	25e	20b		9 h	OMe	24k : 81%

a) 3.0 mol eq. of 20b. b) The reaction temperature was 80°C and 2.0×10^{-3} mol eq. of PdAS was used.

さらに PdAS を 0.8 ppm 用いても定量的に 21a を与えることが判った (Scheme 9). このときの触 媒回転数は 125 万に達し 1 時間当たりの触媒回転数 も1万以上で機能しており PdAS は既存の触媒に 比べ,極めて高い触媒回転能並びに再利用活性を有 することが明らかになった.

С	DHCBr	+	PdAS (5.0 x 10 ⁻⁴ mol eq)	онс
	22b	20a (1.1 mol eq)	Na ₂ CO ₃ (1.11 mol eq) H ₂ O–Solvent (1:1) 100 °C, 9 h	21e
_	Entry	Co-s	olvent	Yield (%)
	1		_	95
	2	THF		91
	3	Toluene		92
	4	DMF		94
	5	1,4-Dioxa	ne	95
	6	2-Butanor	ie	89
	7	2-Butanol		87
	8	EtOH-DM	1E(1:4)	90

Table 8.	The Effect	of Organic Solvents	s as a Co-solvent	on the Heterogeneous	Suzuki-
Miyauı	a Reaction	Catalyzed by PdAS	in Water		

	D 1 Y	, ,		PdAS	(5.0 x 10 ⁻⁴ mol e	(q)	
	(X = I, Br)		R ⁹⁻ BBN 26 (1.1 mol eq)	(3.0 mol eq) (γ) THF, 1,4-dioxane (1:1) (γ) C) R'-R ²	
Entry	R ¹ -X		R ² -9-BBN		Time	Product	Yield
1	19a		C ₈ H ₁₇ -9-BBN	26a	1.5 h	Ph-C ₈ H ₁₇	27a : 95%
2	OMe	19b	26a		1.5 h	OMe C ₈ H ₁₇	27b : 88%
3	22a		26a		1.5 h	MeOC C ₈ H ₁₇	27c: 91%
4	t-Bu────Br	22d	26 a		10 h	<i>t</i> -Bu—C ₈ H ₁₇	27d : 91%
5	AcNHBr	22k	26a		10 h	AcOCHN C ₈ H ₁₇	27e : 93%
6	25b		26a		1.5 h	Ph C ₈ H ₁₇	27f: 97% (<i>E</i> : <i>Z</i> (8 : 1))
7	19a		$Ph(CH_2)_2$ -9-BBN	26b	10 h	$Ph - (CH_2)_2 Ph$	27g : 93%
8	19b		26b		10 h	OMe (CH ₂) ₂ Ph	27h : 91%
9	Br O	25e	BnO-()-9-BBN	26c	15 h		27 i: 77%
10	≽−Вг	25f	26c		15 h	BnO ()	27j : 86%

3-3. 固相パラジウム触媒 PdAS の鈴木-宮浦反 応への多様性 PdAS の適用性を検討すべく,様 々なアリールハライド,アルケニルハライドとア リールボロン酸,アルケニルボロン酸とのクロスカ ップリング反応を触媒量を5×10⁻⁵—10⁻⁴ モル当量 を用い水中で行った.⁹⁵⁾ Table 6 に示す通り,よう 化アリール 19,臭化アリール 22 とアリールボロン 酸 20 のカップリングは,電子供与基,吸引基,⁹⁶⁾ ヘテロ化合物,親水性,疎水性の存在いかんを問わ ず,効率的に進行することが明らかとなった.この 合成法により,アンジオテンシン II 阻害薬の合成 原料^{97—99)}である 21p の調製も効率的に行える.

さらに Table 7 に示した通り、様々なよう化アル ケン、臭化アルケン 25、及びアルケニルボロン酸 23 を用いた反応も上記と同様の条件で効率に進行 し、所望のアルケンを異性化することなく高い収率 で得ることに成功した.この反応を用いることで GABA 取り込み阻害活性スクリーニング化合物で ある **24k**^{100,101)} も 81%で合成することが可能である.

3-4. 固相パラジウム触媒 PdAS の有機溶媒中で 有機溶媒非存在下の鈴木-宮浦反応の開 の活性 発が成功したことで、われわれは有機溶媒中におけ る PdAS の触媒活性の検討に移行した. PdAS の NMR での構造情報を得る際, PdAS が重クロロホ ルム中で膨潤することが観察されたことより、本触 媒が有機溶媒中にても基質、試薬と効果的に相互作 用することを期待した.その結果.Table 8 に示す ように 22b と 20a との反応を様々な有機溶媒-水 混合溶媒系において効率的に触媒反応が進行するこ とが見出された. すなわち、THF、トルエン、 DMF, ジオキサン, 2-ブタノン, 2-ブタノール, エタノールージメトキシエタン有機溶媒混合系の各 種非プロトン,プロトン溶媒と水との混合溶媒系に おいてほぼ 90%以上の収率で 21e が生成した.

			PdAS (5.0 x 10 ⁻⁴ mol eq		
	28 (X = Cl, Br)	20 or 23 (1.1 mol eq)	KF (3.0 mol eq) DME 100 ℃	29	
Entry	Ar X	$R-B(OH)_2$	Time	Product	Yield
1	Ph ^C CI 28a	20b	9 h (1 h)	Ph	29a: 95% (92%) ^{a)}
2	28a	20 c	9 h	COMe	29b : 92%
3	28a	(HO) ₂ B NO ₂	20h 9 h	Ph NO ₂	29c : 95%
4	MeO CI 28b	20a	12 h	MeO	29 a: 98%
5	CI CI 28c	20b	12 h C	OMe	29d: 72% (+ 29d ': 9%)
6	O ₂ N Cl 28d	20a	12 h	O ₂ N Ph	29c : 92%
7	28b	B(OH) ₂	23a 5 h Me	0	29e: 9 9%
		29d'	OMe		

Table 10. The Heterogeneous Suzuki-Miyaura Reaction of Benzyl Halides Catalyzed by PdAS

a) The reaction was performed with 2.0 mol eq. of 20b in the presence of 2×10^{-3} mol eq. of PdAS.

3-5. 固相パラジウム触媒 PdAS による有機溶媒 中でのアルキル-9-BBN, ベンジルハライドのカッ プリング 有機溶媒中での効果を提示するため に,有機溶媒中で要時調製されるアルキル-9-BBN のカップリングを検討した. このカップリングによ り Sp³炭素結合形成が可能であり有機合成化学上の 反応の1つである. アルキル-9-BBN は THF 中 9-BBN-H とアルケンから調製され,精製せずに使用 した.¹⁰²⁾ Table 9 に示すようにアリールハライド, アルケニルハライドとアルキル -9-BBN との反 応¹⁰³⁾は効率的に進行し対応するクロスカップリン グ体が高い収率で与えられた.

さらに PdAS はベンジルハライドとアリール, アルケニルボロン酸¹⁰⁴⁾ とのクロスカップリングに も効果的である. Table 10 のように,電子供与 基,吸引基を有するベンジルハライドともに有効な 基質であり,対応する生成物がほぼ定量的に得られ た.¹⁰⁵⁻¹⁰⁹⁾

4. 新規固相パラジウム触媒 PdAS-V の創製と溝 呂木-ヘック反応への応用

4-1. 固相パラジウム触媒 PdAS-V vs. PdAS 高活性で再利用可能なパラジウム触媒 PdAS の開 発に成功したことから,次に一般的に再利用が難し いとされていた溝呂木-ヘック反応¹¹⁰⁻¹¹³⁾の非均一 再利用触媒反応系への適用を行うことにし た.¹¹⁰⁻¹²²⁾溝呂木-ヘック反応を鍵反応とした天然 物化合物,生理活性物質の合成が数多く報告され, 化学プロセスにも使用されている一方で,実用性の 高い非均一触媒系の構築は今なお検討段階にある. 触媒反応機構を鑑みたとき,本質的に触媒が失活の 克服,配位子からの金属の解離,再配位の制御の解 決が大きな問題点となると考えられた.

PdAS を用いたときの予備実験では反応性に問題 はなく高い収率でカップリング体を与えたものの. 再利用時に触媒の微粉化が起こった.そこでより架 橋度の高い触媒を調製することで触媒強度の向上を 目指した(Fig. 3). すなわち、*N*-isopropylacrylamide 部位とホスフィン部位の比が 5/1 (PdAS では 10/ 1) からなる高分子とパラジウム塩からなる改良型 固相パラジウム触媒 PdAS-V の調製を行った.理 論上, PdAS に比べ PdAS-V は単位体積当たり 8 倍 架橋していることになる。この触媒を Table 11 に 示した通り、よう化ベンゼン(19a)とアクリル酸-t-ブチル(30a)との反応を PdAS-V 3 を 5×10⁻⁵ モル 当量用いトルエン中で反応を行ったところ、シンナ ミル酸-t-ブチル(31a)を収率 92%で得た(Entry この触媒の再利用を行ったところ2回目以降5 回目まで触媒活性が低下することなく 31a が 90% 以上の収率で与えられた. さらに Scheme 10 のよ うに、PdAS-V を 0.8 ppm 用いた場合でも反応が進 行し 31b を 92% で得ることに成功した. このとき の触媒回転数は100万を超え、1時間当たりの触媒 回転数も12000であり、PdAS-Vは既存の触媒に比 べ、極めて高い触媒回転能並びに再利用活性を有す ることが明らかになった。

4-2. 固相パラジウム触媒 PdAS-V を用いたトル エン中での溝呂木-ヘック反応 Table 12 に示し た通り,トルエン中 PdAS-V 3 (5×10⁻⁵ モル当量) を様々なよう化アリール 19 とアクリル酸エステル 30,アクリル酸 32 とのクロスカップンリングに付 したところ,いずれの場合も高い収率で対応するシ ンナミル酸エステル誘導体 31,シンナミル酸誘導 体 33 を得ることに成功した.このときの触媒回転 数は約 20000 である.

Fig. 3. Working Model of PdAS and PdAS-V

PhI	+ (CO ₂ - <i>t</i> -Bu	PdAS-V (3) (5.0 x 10^{-5} mol eq) 1st to 5th cycle				
19a	30a (1.5 mol eq)	Et ₃ N (1.5 m toluene, 100	nol eq) ⁰C, 15 h	31a		
Entry	Cycle	Yield (%)	TON	$TOF(h^{-1})$		
1	1st cycle	92	18400	1230		
2	2nd cycle	93	18600	1240		
3	3rd cycle	95	19000	1270		
4	4th cycle	94	18800	1250		
5	5th cycle	95	19000	1270		
	A total TON: 94000		Av. TOF	: 1250		

Scheme 10. The Heterogeneous Heck Reaction Catalyzed by 8×10^{-7} Mol Eq. of PdAS-V

さらに Table 13 のように,電子供与,吸引基を 有するスチレン 34 を用いることが可能である. そ の結果,対応するスチルベン誘導体 35 が高い収率 で与えられた.

また, この反応系を鈴木-宮浦反応の場合と同様, 水中にて行うことにも成功している (Table 14).¹²³⁻¹²⁶⁾本触媒系において,よう化アリール 19 とアクリル酸(32)並びにスチレン(34)との反応を水中で行うと,対応するカップリング体が高い収率で 生成した (Scheme 11).

本触媒系を鍵反応として、新しい抗腫瘍活性物質 であるレスベラトロール(33h)の合成を行った. レスベラトロールはキノンリダクターゼ活性導入、 シクロオキシゲナーゼ -2(COX-2)阻害などの活 性による抗腫瘍性を示す.¹²⁷⁻¹³⁰⁾天然からの供給が 少ないため合成化学的手法による生産が重要であ る.現在までに様々な合成法があり,液相合成で溝 呂木-ヘック反応を鍵工程としたものも報告されて いるが,鍵反応における収率,パラジウム金属の生 成物への混入など改善すべき点があった.¹³¹⁻¹³³⁾そ こで,PdAS-Vを用いた溝呂木-ヘック反応を鍵反 応(収率 93%)とした合成により3工程75%でレ スベラトロールが与えられた.

5. 新規不溶性固相不斉触媒 TiSS の創製とその 不斉カルボニルエン反応への応用

この触媒調製の方法論は、固相不斉触媒¹³⁴⁻¹³⁷⁾の 調製にも適用可能である。中井らによる不斉カルボ ニルエン反応¹³⁸⁻¹⁴⁰⁾に有効なビスビナフトール-*μ*-オキソジチタノラートの調製法を参考に、¹³⁸⁾ 無機 化合物としてチタンイソプロポキシド、非架橋型高 分子不斉配位子として binaphthol ユニットを有す る鎖状ポリスチレンから自己集合を行うことで不溶

	D 1	$\mathbf{R}^{1}\mathbf{I}$ + \equiv		PdAS-V (5.0 x 10 ⁻⁵ mol eq)		q) $R^1_{\underline{\ }}$	
	K I	·	R ² (1.5 mol eq)	Et to	$_{3}N$ (1.5 mol eq) oluene, 100 °C	R ²	
Entry	R ¹ I		$=$ \mathbb{R}^2		Time	Product	Yield
1	19a		⊂_CO ₂ Me	30b	12 h	Ph CO ₂ Me	31b : 93%
2	19a		⊂_CO ₂ Bu	30c	20 h	Ph CO ₂ Bu	31c : 98%
3	19 a		-O OPh	30d	20 h	PhOOPh	31d: 97%
4	19 a		$\rightarrow 0^{F_3C}_{O}$ CF_3	30e	5 h	$Ph \xrightarrow{F_3C} CF_3$	31e: 95%
5	EtO ₂ C	19b	30b		20 h	EtO ₂ C	31f : 95%
6	AcO-	19c	30b		20 h	AcO	31g: 92 %
7	CI	19d	30b		20 h	CI-CO ₂ Me	31h : 95%
8	F	19e	CO ₂ Et	30f	20 h	F-CO ₂ Et	31i: 93 %
9	MeO-	19f	30b		20 h	MeO	31j : 92%
10	OMe	19g	30b		40 h	OMe	31k : 90%
11		19h	30b		60 h	CF ₃	311 : 82%
12	19a		—СО₂Н	32	5 h	Ph CO ₂ H	33a: 93% ^{a)}
13	°	19i	32		4 h	0 СО ₂ Н	33b: 90% ^{a)}
14	19f		32		8 h	MeO	33c: 87% ^{<i>a</i>)}

Table 12.	The Heck	Reaction	of Aryl	Iodides	with Acrylates

a) The product was purified by recrystallization without column chromatography.

性固相不斉チタン触媒 TiSS 4 の創製に成功した. この触媒を用いる不斉カルボニルエン反応の検討の 結果,高い化学収率,不斉収率で対応する成績体が 生成した. TiSS の 5 回までの再利用を確認し,不 斉合成触媒としての有効性も見出した (Table 15).

6. おわりに

以上のように、非架橋型高分子配位子と金属化合物との自己集合法により様々な固相高分子金属触媒の創製に成功し、新規固相タングステン触媒PWAA,新規固相パラジウム触媒PdAS,PdAS-V,新規固相チタン不斉触媒TiSSを提示することがで

		140	The file file Re		Triji ioulues w	th Styrenes	
	D ¹ I	+	=	PdAS-V	(5.0 x 10 ⁻⁵ mol	eq) R ¹	
			R ² (1.5 mol eq)	Et ₃ N tol	Ŋ (1.5 mol eq) uene, 100 °C	R ²	
Entry	$R^{1}I$		$=$ \mathbb{R}^2		Time	Product	Yield
1	19a		Ph	34a	12 h	PhPh	35a: 90%
2	BzO-	19j	34a		20 h	BzO-	35b : 86% ^{<i>a</i>)}
3	AcO-	19c	34a		20 h	AcO-	35c : 75% ^{<i>a</i>)}
4	CI	19d	34a		20 h	CI	35d : 87% ^{<i>a</i>)}
5	MeO-	19f	34a		20 h	MeO — Ph	35e: 92% ^{<i>a</i>)}
6	19a		OAc	34b	20 h	Ph	35c: 95% ^{a)}
7	19a		CI	34c	20 h	PhCI	35d : 88% ^{<i>a</i>)}
8	19 a		ОМе	34d	20 h	PhOMe	35e: 93% ^{a)}

Table 13. The Heck Reaction of Arvl Iodides with Styrenes

a) These products were purified by recrystallization without column chromatography.

	51		Table 14. The Heck Reaction in PdAS-V (5.0 x 10 ⁻⁵		eaction in Water 5.0 x 10 ⁻⁵ mol eq) R ¹	
	Ri	+	CO ₂ H (1.5 mol eq)	Et ₃ N (1.5 mol eq) H ₂ O, 100 °C		→ CO₂H	
Entry	$R^{1}I$		$= R^2$		Time	Product	Yield ^{a)}
1		19a	=_СО₂н	32	6 h	Ph-CO ₂ H	33a : 94%
2	CI	19d	32		6 h		33d : 91%
3	\sim	19i	32		4 h	0 СО ₂ Н	33b : 91%
4	онс	19k	32		6 h	OHC	33e: 94%
5	MeO	19f	32		24 h	MeO-CO ₂ H	33c: 88%
6	√I OMe	19g	32		24 h	OMe	33f : 95%
7		191	32		8 h	CO ₂ H	33 g: 92%
8	19 a			34a	36 h	PhPh	33a : 76%
9	°	19i	 34a		30 h	OPh	33f : 97%

a) These products were purified by crystallization without column chromatography.

Scheme 11. Efficient Synthesis of Resveratrol via the Heck Reaction by PdAS-V

きた. これらの触媒は高活性で再利用可能であり, 多様性に富んだ基質へ適用できる. 現在 PdAS は 東京化成工業にて市販されており産学協同を果たし た(Fig. 4). 今後,多種の触媒系への展開を目指 すとともに,超分子化学を基盤とした新素材の開発 も視野に入れた錯体系の構築への発展を考えている. 謝辞 本研究は帝京大学薬学部創薬化学教室 (池上四郎教授)のもとで行われたものであり、こ の場を借りて池上四郎教授に深謝致します.また、 同助教授高橋秀依博士に感謝申し上げます.さらに 修士課程の学生で、直接研究を遂行してくれました 一戸正人修士、田畑英嗣修士、竹田幸司修士に感謝 致します.各種機器測定を行って下さいました帝京

Fig. 4. Commercially Available PdAS from TCI

大学薬学部下出順子氏,橘川まろか氏,阿部 清助 手に感謝致します.さらに,御高配下さいました分 子科学研究所魚住泰広教授に感謝申し上げます.私 をここまで御指導御鞭撻下さいました東京大学大学 院薬学系研究科柴崎正勝先生に心より御礼申し上げ ます.また,御指導下さいました当時同助教授の笹 井宏明教授(阪大),私が研究室配属時にD3の学 生として御指導下さいました鈴木健之助教授(阪大) に御礼申し上げます.最後に本研究成果の一部は, 文部科学省科学研究費補助金,大日本インキ有機合 成化学協会研究企画賞,井上研究奨励賞の助成によ り行われました.併せて感謝致します.

REFERENCES AND NOTES

- Anastas P. T., Warner J. C., "Green Chemistry: Theory and Practice", Oxford Univ. Press, Oxford, 1998.
- Tundo P., Anastas P., Black D. S., Breen J., Collins T., Memoli S., Miyamoto J., Polyakoff M., Tumas W., *Pure Appl. Chem.*, 72, 1207–1228 (2000).
- de Miguel Y. R., J. Chem. Soc., Perkin Trans.
 1, 4213-4221 (2000).
- Shuttleworth S. J., Allin S. M., Wilson R. D., Nasturica D., *Synthesis*, 1035–1074 (2000).

- 5) Loch J. A., Crabtree R. H., *Pure Appl. Chem.*, **73**, 119–128 (2001).
- 6) Corain B., Kralik M., J. Mol. Catal. A: Chem., 173, 99–115 (2001).
- Bergbreiter D. E., Curr. Opin. Drug Discov. Dev., 4, 736-744 (2001).
- Cameron J. H., "Solid State Organometallic Chemistry Methods and Applications," eds. by Gielen M., Willem R., Wrackmeyer B., Wiley, Chichester, 1999.
- Buchmeiser M. R., "Polymer Materials in Organic Synthesis and Catalysis," Wiley-VCH, Weinheim, 2003.
- Centi G., Cavani F., Trifiro F., "Selective Oxidation by Heterogeneous Catalysis (Fundamental and Applied Catalysis)," Kluwer Academic Pubs, Norwell, MA, 2000.
- 11) Hodnett K., "Heterogeneous Catalytic Oxidation," Wiley, New York, 2000.
- 12) Bunin B. A., "The Combinatorial Index," Academic Press, San Diego, 1998.
- 13) "Reactions on Polymers," ed. by Moore J. A. Redel, Boston, 1973.
- 14) "Solid Phase Synthesis," eds. by Blossey E. C., Neckers D. C., Dowden, Hutchinson and Ross, Pennsylvania, 1975.
- 15) Corma A., García H., Chem. Rev., 102, 3837– 3892 (2002).
- 16) Yamada Y. M. A., Ichinohe M., Takahashi H., Ikegami S., Org. Lett., 3, 1837–1841 (2001).
- 17) Yamada Y. M. A., Ichinohe M., Takahashi H., Ikegami S., *Tetrahedron Lett.*, 43, 3431–3434 (2002).
- Yamada Y. M. A., Takeda K., Takahashi H., Ikegami S., Org. Lett., 4, 3371–3374 (2002).
- 19) Yamada Y. M. A., Tabata H., Takahashi H., Ikegami S., *Synlett*, 2031–2034 (2002).
- Yamada Y. M. A., Takeda K., Takahashi H., Ikegami S., *Tetrahedron Lett.*, 44, 2379–2382 (2003).
- 21) Yamada Y. M. A., Takeda K., Takahashi H., Ikegami S., J. Org. Chem., 68, 7733-7741 (2003).
- 22) Yamada Y. M. A., Tabata H., Ichinohe M., Takahashi H., Ikegami S., *Tetrahedron*, 60, 4087-4096 (2004).
- 23) Yamada Y. M. A., Takeda K., Takahashi H., Ikegami S., *Tetrahedron*, 60, 4097–4105

(2004).

- 24) Villa A. L., Sels B. F., de Vos D. E., Jacobs P. A., J. Org. Chem., 64, 7267–7270 (1999).
- 25) Ishii Y., Yamawaki K., Ura T., Yamada H., Yoshida T., Ogawa M., J. Org. Chem., 53, 3587–3593 (1988).
- 26) Massart R., Contant R., Fruchart J.-M., Ciabrini J.-P., Fournier M., *Inorg. Chem.*, 16, 2916–2921 (1977).
- 27) Ishii Y., Tanaka H., Nishiyama Y., Chem. Lett., 1-4 (1994).
- 28) Keggin J. F., Proc. R. Soc. Lond., Ser. A, 144, 75–100 (1934).
- 29) Brown G. M., Noe-Spirlet M.-R., Busing W.
 R., Levy H. A., *Acta Crystallogr. B*, 33, 1038–1046 (1977).
- 30) Ogata Y., Sawaki Y., "Organic Syntheses by Oxidation with Metal Compounds," eds. by Mijs W. J., De Jonge C. R. H. I., Plenum Press, New York, 1986, pp. 839–876.
- Sato K., Aoki M., Noyori R., Science, 281, 1646–1647 (1998).
- 32) Venturello C., Gambaro M., J. Org. Chem.,
 56, 5924–5931 (1991).
- 33) Venturello C., Gambaro M., Synthesis, 295–297 (1989).
- 34) Bortolini O., Conte V., Di Furia F., Modena
 G., J. Org. Chem., 51, 2661–2663 (1986).
- Villa A. L., Sels B. F., De Vos D. E., Jacobs
 P. A., J. Org. Chem., 64, 7267–7270 (1999).
- 36) Hoegaerts D., Sels B. F., de Vos D. E., Verpoort F., Jacobs P. A., *Catal. Today*, 60, 209–218 (2000).
- 37) Gelbard G., Breton F., Quenard M., Sherrington D. C., *J. Mol. Catal. A: Chem.*, 153, 7–18 (2000).
- 38) Sakamoto T., Pac C., *Tetrahedron Lett.*, 41, 10009–10012 (2000).
- Briot E., Piquemal J.-Y., Vennat M., Brégeault J.-M., Chottard G., Manoli J.-M., J. Mater. Chem., 10, 953–958 (2000).
- 40) Ichihara J., *Tetrahedron Lett.*, **42**, 695–697 (2001).
- 41) De Bos D. E., Wahlen J., Sels B. F., Jacobs P. A., Synlett, 367–380 (2002).
- 42) de Vos D. E., Jacobs P. A., J. Org. Chem.,
 64, 7267-7270 (1999).
- 43) It was reported that pH control in aqueous media was important for the tungsten-catalyzed

epoxidation, see Refs. 33, 34 and 36.

- 44) Haines A. H., "Methods for the Oxidation of Organic Compounds," Academic Press, London, 1985.
- 45) Herrmann W. A., Fridgen J., Haider J. J., "Peroxide Chem.," ed. by Adam W., Wiley, Weinheim, 2000, pp. 406–432.
- 46) Ogata Y., Tomizawa K., Maeda H., Bull. Chem. Soc. Jpn., 53, 285–286 (1980).
- 47) Murahashi S., Mitsui H., Shiota T., Tsuda T., Watanabe S., J. Org. Chem., 55, 1736–1744 (1990).
- 48) Murahashi S., Oda T., Sugahara T., Masui
 Y., J. Org. Chem., 55, 1744–1749 (1990).
- 49) Sakaue S., Sakata Y., Ishii Y., Chem. Lett., 289-292 (1992).
- 50) Marcantoni E., Petrini M., Polimanti O., *Tetrahedron Lett.*, **36**, 3561–3562 (1995).
- Ballistreri F. P., Barbuzzi E. G. M., Tomaselli
 G. A., J. Org. Chem., 61, 6381–6387 (1996).
- Reddy J. S., Jacobs P. A., J. Chem. Soc., Perkin Trans. 1, 22, 2665–2666 (1993).
- 53) Joseph R., Sudalai A., Ravindranathan T., Synlett, 11, 1177–1178 (1995).
- 54) Joseph R., Ravindranathan T., Sudalai A., *Tetrahedron Lett.*, **36**, 1903–1904 (1995).
- 55) Delaude L., Laszlo P., J. Org. Chem., 61, 6360–6370 (1996).
- 56) Dewkar G. K., Nikalje M. D., Ali I. S., Paraskar A. S., Jagtap H. S., Sudalai S., Angew. Chem. Int. Ed. Engl., 40, 405–408 (2001).
- 57) The reaction oxidized by more concentrated H_2O_2 aqueous solution was less successful because dimerization of the substrates occurred. Besides, recycling of PWAA in case of **11a** was not efficient to afford **12a** in lower yield.
- 58) These oxidations were controlled kinetically, and the regioselectivity for the formation of nitrones was determined at the oxidation stage of dibenzyl hydroxyamines to nitrones. It was assured by the following results: no isomerization between **12e** and **12e**' was observed in the reaction of **12e** or **12e**' in the presence of PWAA and 2.5% H₂O₂, the reaction of **11e** in CH₂Cl₂ at room temperature provided **12e** and **12e**' in 95% yield with the same regioselectivity (**12e**/**12e**'=1.76/1), even in the reaction of **12e** or **12e**' with CH₂Cl₂ under identical condi-

tions, isomerizations were hardly observed.

- 59) Schultz H. S., Freyermuth H. B., Buc S. R., J. Org. Chem., 28, 1140–1142 (1963).
- Stec Z., Zawadiak J., Skibinski A., Pastuch G., Pol. J. Chem., 70, 1121-1123 (1996).
- 61) Neumann R., Juwiler D., *Tetrahedron*, **52**, 8781–8788 (1996).
- 62) Gresley N. M., Griffith W. P., Laemmel A. C., Nogueira H. I. S., Perkin B. C., *J. Mol. Catal.*, 117, 185–198 (1997).
- 63) Collins F. M., Lucy A. R., Sharp C., J. Mol. Catal., 117, 397–403 (1997).
- 64) Yasuhara Y., Yamaguchi S., Ichihara J., Nomoto T., Sasaki Y., *Phosphorus Res. Bull.*, 11, 43-46 (2000).
- Sato K., Hyodo M., Aoki M., Zheng X.-Q., Noyori R., *Tetrahedron*, 57, 2469–2476 (2001).
- 66) Dell'Anna M. M., Mastrorilli P., Nobile C.
 F., J. Mol. Catal. A: Chem., 108, 57–62 (1996).
- 67) Alcon M. J., Corma A., Iglesias M., Sanchez F., J. Mol. Catal. A: Chem., 178, 253–266 (2002).
- 68) Noyori et al. reported that the oxidation of sulfides to sulfoxides proceeded efficiently in hydrogen peroxide without catalysts, so that we have not examined the selective oxidation to sulfoxide. *See* Ref. 65.
- Baudin J. B., Hareau G., Julia S. A., Ruel O., *Tetrahedron Lett.*, 32, 1175–1178 (1991).
- 70) Kondo K., Tunemoto D., *Tetrahedron Lett.*,
 17, 1397–1400 (1975).
- 71) Caton M. P. L., Coffee E. C. J., Watkins G.
 L., *Tetrahedron Lett.*, 9, 773–774 (1972).
- 72) Brégault et al. reported that heteropoly acidic structure easily decomposed in the presence of hydrogen peroxide under the homogeneous conditions, *see*: Salles L., Aubry C., Thouvenot R., Robert F., Dorémieux-Morin C., Chottard G., Ledon H., Jeannin Y., Brégault J., *Inorg. Chem.*, 33, 871–878 (1994). On the other hand, Ishii et al. proved that [π-C₅H₅N⁺ (CH₂)₁₅CH₃]₃PW₁₂O³⁻₄₀ maintained the structure closed to Keggin unit after treatment with hydrogen peroxide. *See* Ref. 27.
- 73) For an example of the Suzuki-Miyaura reaction used by homogeneous palladium catalysts prepared from poly (*N*-isopropylacrylamide)

polymers as soluble and thermoresponsive catalysts: Bergbreiter D. E., Osburn P. L., Wilson A., Sink E. M., J. Am. Chem. Soc., **122**, 9058–9064 (2000).

- 74) For an example of (*N*-isopropylacrylamide) polymer-protected palladium nanoparticles for hydrogenation, *see*: Chen C.-W., Akashi M., *Polym. Adv. Technol.*, **10**, 127–133 (1999).
- 75) Mann F. G., Purdie D., J. Chem. Soc., 1549– 1563 (1935).
- 76) Miyaura N., Suzuki A., Chem. Rev., 95, 2457
 -2483 (1995).
- 77) Suzuki A., J. Organomet. Chem., 576, 147– 168 (1999).
- 78) "Organometallics in Synthesis A Manual," ed. by Schlosser M., Miley, West Sussex, 2002.
- 79) Stanforth S. P., *Tetrahedron*, 54, 263–303 (1998).
- 80) Thompson L. A., Ellman J. A., Chem. Rev., 96, 555-600 (1996).
- 81) Tsuji J., "Palladium Reagents and Catalysts: Innovations in Organic Synthesis," Wiley, Chichester, 1995.
- 82) Akiyama R., Kobayashi S., Angew. Chem. Int. Ed. Engl., 40, 3469–3471 (2001).
- 83) Cammidge A. N., Baines N. J., Bellingham R.
 K., Chem. Commun., 2588–2589 (2001).
- LeBlond C. R., Andrew A. T., Sun Y., Sowa Jr. J. R., Org. Lett., 3, 1555–1557 (2001).
- 85) Gordon R. S., Holmes A. B., Chem. Commun., 640–641 (2002).
- Kim S.-W., Kim M., Lee W. Y., Hyeon T., J.
 Am. Chem. Soc., 124, 7642–7643 (2002).
- 87) Uozumi Y., Nakai Y., Org. Lett., 4, 2997–3000 (2002).
- 88) Sakurai H., Tsukuda T., Hirao T., J. Org. Chem., 67, 2721-2722 (2002).
- Mori K., Yamaguchi K., Hara T., Mizugaki T., Ebitani K., Kaneda K., J. Am. Chem. Soc., 124, 11572–11573 (2002).
- 90) Li C.-J., Chem. Rev., 93, 2023–2035 (1993).
- 91) Grieco P. A., "Organic Synthesis in Water," Blackie Academic & Professional, London, 1998.
- Davies I. W., Matty L., Hughes D. L., J. Am. Chem. Soc., 123, 10139–10140 (2001).
- 93) It was ascertained that thorough washing with water and THF in preparing PdAS was essen-

tial for removing a trace amount of active and homogeneous catalytic species from PdAS.

- 94) PdAS was reused after dried in vacuo.
- 95) These reactions afforded 300 to 400 mg (2.25 mmol) of the products, so that it was difficult to isolate the products efficiently under organic solvent-free conditions.
- 96) Watanabe T., Miyaura N., Suzuki A., Synlett, 207–210 (1992).
- 97) Kubo K., Kohara Y., Imamiya E., Sugiura Y., Inada Y., Furukawa Y., Nishikawa K., Naka T., *J. Med. Chem.*, 36, 2182–2195 (1993).
- 98) Carini D. J., Duncia J. V., Aldrich P. E., Chiu A. T., Johnson A. L., Pierce M. E., Price W. A., Santella III J. B., Wells G. J., Wexler R. R., Wong P. C., Yoo S.-E., Timmermans P. B. M. W. M., J. Med. Chem., 34, 2525–2547 (1991).
- 99) Mantlo N. B., Chakravarty P. K., Ondeyka D. L., Siegl P. K. S., Chang R. S., Lotti V. J., Faust K. A., Chen T.-B., Schorn T. W., Sweet C. S., Emmert S. E., Patchett A. A., Greenlee W. J., J. Med. Chem., 34, 2919–2922 (1991).
- 100) Organ M. G., Mayhew D. M., Cooper J. T., Dixon C. E., Lavorato D. J., Kaldor S. W., Siegel M. G., J. Comb. Chem., 3, 64-67 (2001).
- 101) Organ M. G., Arvanitis E. A., Dixon C. E., Cooper J. T., J. Am. Chem. Soc., 124, 1288– 1294 (2002).
- 102) Ishiyama T., Miyaura N., Suzuki A., Org. Synth., 71, 89–96 (1993).
- 103) Ishiyama T., Abe S., Miyaura N., Suzuki A., Chem. Lett., 691–694 (1992).
- 104) Chemler S. R., Trauner D., Danishefsky S. J.,
 Angew. Chem. Int. Ed. Engl., 40, 4544–4568 (2001).
- 105) Maddaford S. P., Keay B. A., J. Org. Chem.,
 59, 6501–6503, (1994).
- 106) Chowdhury S., Georghiou P. E., *Tetrahedron Lett.*, 40, 7599–7603 (1999).
- 107) Juteau H., Gareau Y., Labelle M., Lamontagne S., Tremblay N., Carriére M.-C., Sawyer N., Denis D., Metters K. M., *Bioorg. Med. Chem. Lett.*, **11**, 747–749 (2001).
- Botella L., Nájera C., Angew. Chem. Int. Ed.
 Engl., 41, 179–181 (2002).
- 109) When the reaction of benzyl bromide with **20b** (1.5 mol eq.) with PdAS (5×10^{-4} mol eq.)

and KF (3 mol eq.) in H_2O was performed for 24 h, **29a** was obtained in 65% yield with a significant amount of anisole that was produced by hydrolysis of **20b**.

- 110) Beletskaya I. P., Cheprakov A. V., Chem. Rev., 100, 3009–3066 (2000).
- 111) Whitcombe N. J., Hii K. K. (M.), Gibson S. E., *Tetrahedron*, 57, 7449–7476 (2001).
- 112) Biffis A., Zecca M., Basato M., J. Mol. Catal. A: Chem., 173, 249–274 (2001).
- 113) Uozumi Y., Hayashi T., "Solid-Phase Palladium Catalysis for High-throughput Organic Synthesis, Handbook of Combinatorial Chemistry," eds. by Nicolaou K. C., Hanko R., Hartwig W., Wiley, Weinheim, 2002.
- 114) Zhou J., Zhou R., Mo L., Zhao S., Zheng X.,
 J. Mol. Catal. A: Chem., 178, 289–292 (2002).
- 115) Gordon R. S., Holmes A. B., Chem. Commun., 640-641 (2002).
- 116) Dams M., Drijkoningen L., De Vos D., Jacobs P., Chem. Commun., 1062–1063 (2002).
- 117) Galow T. H., Drechsler U., Hanson J. A., Rotello V. M., Chem. Commun., 1076–1077 (2002).
- 118) Heidenreich R. G., Köhler K., Krauter J. G.
 E., Pietsch J., *Synlett*, 1118–1122 (2002).
- 119) Chandrasekhar V., Athimoolam A., Org. Lett., 4, 2113–2116 (2002).
- 120) Dell'Anna M. M., Mastrorilli P., Muscio F., Nobile C. F., Suranna G. P., *Eur. J. Org. Chem.*, 1094–1099 (2002).
- Mori K., Yamaguchi K., Hara T., Mizugaki T., Ebitani K., Kaneda K., J. Am. Chem. Soc., 124, 11572–11573 (2002).
- Bergbreiter D. E., Osburn P. L., Wilson A., Sink E. M., J. Am. Chem. Soc., 122, 9058– 9064 (2000).
- Buchmeiser M. R., Lubbad S., Mayr M., Wurst K., *Inorg. Chim. Acta*, 345 145–153 (2002).
- 124) Uozumi Y., Kimura T., *Synlett*, 2045–2048 (2002).
- 125) Kogan V., Aizenshtat Z., Popovitz-Biro R., Neumann R., Org. Lett., 4, 3529–3532 (2002).
- 126) Mukhopadhyay S., Rothenberg G., Joshi A., Baidossi M., Sasson Y., Adv. Synth. Cat.,

344, 348-354 (2002).

- 127) Jang M., Cai L., Udeani G. O., Slowing K. V., Thomas C. F., Beecher C. W. W., Fong H. H. S., Farnsworth N. R., Kinghorn A. D., Mehta R. G., Moon R. C., Pezzuto J. M., Science, 275, 218–220 (1997).
- 128) Subbaramaiah K., Dannenberg A. J., Adv. Exp. Med. Biol., 492, 147–157 (2001).
- 129) Ciolino H. P., Yeh G. C., Adv. Exp. Med. Biol., 492, 183–193 (2001).
- 130) Sovak M., J. Med. Food, 4, 93-105 (2001).
- 131) Orsini F., Pelizzoni F., Bellini B., Miglierini G., *Carbohydr. Res.*, 301, 95–109 (1997).
- 132) Recently, Gruiso reported syntheses of resveratrol via the homogeneous Heck reaction (70 % yield) using Pd (OAc)₂ and PPh₃, used in 1 $\times 10^{-2}$ mol eq., see: Guiso M., Marra C., Farina A., Tetrahedron Lett., 43, 597–598 (2002).
- 133) Reek J. N. H., Priem A. H., Engelkamp H.,

Rowan A. E., Elemans J. A. A. W., Nolte R. J. M., *J. Am. Chem. Soc.*, **119**, 9956–9964 (1997).

- 134) Lipshutz B. H., Shin Y.-J., *Tetrahedron Lett.*,41, 9515 (2000).
- Yang X.-W., Sheng J.-H., Da C.-S., Wang H.-S., Su Wu, Wang R., Chan A. S. C., J. Org. Chem., 65, 295 (2000).
- 136) Sellner H., Faber C., Rheiner P. B., SeebachD., *Chem. Eur. J.*, 6, 3692 (2000).
- 137) Jayaprakash D., Sasai H., Tetrahedron: Asymmetry, 12, 2589 (2001).
- 138) Kitamoto D., Imma H., Nakai T., *Tetrahedron Lett.*, **36**, 1861 (1995).
- 139) Terada M., Mikami K., J. Chem. Soc. Chem. Commun., 833 (1994).
- 140) Annunziata R., Benaglia M., Cinquini M., Cozzi F., Pitillo M., J. Org. Chem., 66, 3160 (2001).