-Reviews-

アルケニルホスホナートを基盤とする炭素--炭素結合形成反応の開発

長岡康夫

京都大学薬学研究科, 〒606-8501 京都市左京区吉田下阿達町

Carbon-Carbon Bond Formation Based on Alkenylphosphonates

Yasuo NAGAOKA¹⁾

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606–8501, Japan

(Received July 6, 2001)

We have been engaged in the development of asymmetric conjugate addition reactions of lithium thiolates, organolithiums and organocopper reagents under the control of external chiral ligands and we have also developed an efficient asymmetric Horner-Wadsworth-Emmons (HWE) reaction using an external chiral Ligand. We attempted to synthesize axial chiral allenes by combination of these conjugate addition reaction and HWE reaction. In the course of this study, we found that Michael-aldol reaction of alkenylphosphonates 1 using LDA and aldehydes results in the direct formation of α , β -unsaturated hydroxyphosphonate 4, which was efficiently converted to allene by treatment with KH or KH-18-crown-6. Furthermore, allenes were synthesized by sequential double HWE reaction in one-flask manner starting from methylenebisphosphonate 8. The key to success is a metal exchange of intermediate lithium alkoxide 4-Li to potassium alkoxide 4-K by the addition of t-BuOK. As our continuous study of carbon-carbon bond formation based on alkenylphosphonates, a cyclization reaction of bisalkenylphosphonate 6 was developed. Although the treatment of 6 with organolithium reagents afforded a mixture of addition-cyclization product 9 and deprotonation-cyclization product 10, the treatment of 6 with LDA gave 10 selectively. These cyclization methods were applied to the synthesis of efficient chiral phosphine ligands.

Key words—Horner-Wadsworth-Emmons reaction; alkenylphosphonate; axial chirality; allene; cyclization; chiral phosphine ligand

1. はじめに

我々は炭素一硫黄,²⁾炭素一窒素³⁾そして炭素一 炭素⁴⁾結合形成反応の開発と不斉化に取り組んでき た.特にエノンやエノエートに対する種々の求核剤 のキラル配位子制御による立体選択的共役付加反応 の開発を中心的課題としてきた.一例として我々は α , β-不飽和エステルに対するチオールの共役付加 反応が触媒量のリチウムチオラートーキラル配位子 錯体の存在下高い選択性で進行することを見いだし ている.^{2a)} さらに当研究室では外部キラル配位子制 御による不斉 Horner-Wadsworth-Emmons(HWE) 反応の開発に成功し軸性不斉を有するオレフィンを 最高 90% ee の選択性で定量的に得ることに成功し ている.⁵⁾ 我々はこのような共役付加反応と HWE 反応を結びつけることにより軸性不斉を有するアレ ンを合成しようと計画した.すなわち α , β-不飽和 ホスホナートであるアルケニルホスホナート1に対 する求核剤(Nu)の共役付加反応に伴い生成する α位アニオン2をカルボニル化合物で捕捉しβ-ヒ ドロキシホスホナート3を得る.3からNuを脱離 させて不飽和ホスホナート4に変換した後,HWE 型のオレフィン化をすればアレン5が得られると期 待した(Scheme 1a).

さらに, 我々はこのアルケニルホスホナート α-アニオンの炭素求電子剤による捕捉反応を分子内の 炭素一炭素結合形成による環形成反応に展開するこ とを計画した. すなわち分子内に2つの α, β-不飽 和ホスホナートを有するビスアルケニルホスホナー ト6を基質として用いて Nu の共役付加とそれに伴 い生成する α 位アニオンを分子内のマイケル受容 体となるもう一方の不飽和ホスホナートで捕捉する ダブルマイケル型の環化反応を試みた (Scheme

本総説は、平成13年度日本薬学会近畿支部学術奨励賞の受賞を記念して記述したものである.

Scheme 1. Synthesis of Allenes and Cyclic Bisphosphonate from Alkenylphosphonates

1b).本論文ではこのアルケニルホスホナートを基盤とするアレン合成法開発⁶とビスアルケニルホスホナートの環化反応開発⁷⁾の背景と経緯について述べる.

2. アルケニルホスホナートに対する Michael-Aldol 型付加反応

当量のリチウムチオラート (PhSLi) をアルケニ ルホスホナート1 (R¹=Ph) に反応させた後 PhCHO を加えたところ目的の Michael-Aldol 型の 付加体3(Nu=SPh)は与えず1の回収にとどまっ た. 同様の結果が α, β-不飽和エステルを基質とし た時にも観察されている.²⁰⁾この場合, 触媒量のリ チウムチオラートと当量の TMS チオエーテルを用 いることで Michael-Aldol 付加体の Li-アルコキシ ドアニオンがシリル化によりトラップされるととも にリチウムチオラートが再生するという触媒サイク ルが働き反応が進行し目的の付加体が得られること が解明されている. TMS チオエーテルが存在しな い場合, Michael-Aldol 付加体のアルコキシド部位 が TMS 化されないためレトロアルドール反応とそ れに引き続くチオ基の脱離反応により原料に戻るこ とが示唆される. したがって不飽和ホスホナート1 を基質とした場合も同様に見かけ上反応が進行せず 1の回収に終わったと考えられる.

一方, アルケニルホスホナート1 (R¹=Ph)を THF 中-78℃で LDA 処理した後, *t*-BuCHO を加 えたところ直接 α, β-不飽和ヒドロキシホスホナー ト4 (R¹=Ph, R²=*t*-Bu, R³=H) が定量的に得ら れることが明らかになった.4は HWE 型の脱離反 応によりアレンへ一行程で変換できるので,この方 法を用いればアルケニルホスホナートからわずか二 行程でアレンが合成できることになる.ここで,通 常の HWE 反応はアルキルホスホナートを基質と している⁸⁾のに対してこのアレン合成ではアルケニ ルホスホナートを基質としている.このような HWE 反応は十分に確立された方法ではない.そこ で我々は本法によるアレン合成法の開拓に着手する こととした.

3. アルケニルホスホナートを基質とするアレン 合成法の開発⁶⁾

まず始めにアルケニルホスホナートの α 位アニ オンの形成について検討した.前述のように γ 位が 脱プロトン化されない基質 1 (\mathbf{R}^1 =Ph, *t*-Bu) の場 合,基質を-78°C で THF 中 LDA 処理後アルデヒ ドを加えると目的の α , β -不飽和ヒドロキシホスホ ナート4 が収率よく得られる.この4の生成が本法 によるアレン合成を成功させる鍵となる.しかしな がら, γ 位の脱プロトン化が可能なプロペニルホス

Scheme 2. Addition of LDA to Mixture of 1 and PhCHO Affording 4

ホナート1 (R¹=CH₃) に対して同様の処理をする と目的の α, β-不飽和ヒドロキシホスホナート4は 得られず *B*, y-不飽和ヒドロキシホスホナート 7 が 得られた. したがってこの反応系では基質の y 位の 脱プロトン化が優先して進行しアリルリチウム中間 体が生成して、このアニオンがアルデヒドに捕捉さ れて7が形成されたと考えられる(Scheme 2a).と ころが THF – 78℃ で LDA をプロペニルホスホ ナート1 (R^1 =CH₃) と PhCHO との混合溶液に滴 下したところ目的の4 (R¹=CH₃, R²=Ph, R³=H) が得られることが明らかになった、したがって、こ の反応系では LDA の共役付加⁶若しくは α位ビニ ルプロトンの直接の脱プロトン化%により α 位アニ オンが形成されることが示唆されている. そしてこ のアニオンが反応系中のアルデヒドで即座に捕捉さ れると目的の4が得られるが、そうでない場合、熱 力学的に安定なアリルアニオンが形成し、これがア ルデヒドと反応して7が生成すると考えられる (Fig. 1). このように y 位の脱プロトン化が可能な 基質を用いた場合、LDA をこの基質とアルデヒド の混合溶液中に加える必要がある。この反応系では エノール化が可能なアルデヒドやケトンを用いた場 合. LDA とこれらカルボニル化合物との反応が優 先する可能性がある.しかしながら、実際にエノー ル化可能なアルデヒドで反応を行ったところ、幸い なことに目的の付加体4が収率よく得られることが 解った (Scheme 3). この結果は不飽和ホスホナー トの α 位アニオンの形成が速度論的に速い過程で あり、このアニオンが即座にカルボニル化合物で捕 捉されていることを示している.

ここで本反応の鍵となる化合物4の合成法が確立 したので、次に4のアレンへの変換について検討し

Scheme 3. Reaction with Enolizable Aldehyde

Fig. 1. Mechanisms for the Formation of 4 and 7

た. 4のホスフィンオキシド体を経由したアレン合成法が 1974年に Marszak らにより既に報告されている.¹⁰⁾ 彼らはアルキニルホスフィンオキシドに対する有機銅試薬とアルデヒドを用いたマイケル—アルドール型の付加反応で4のホスフィンオキシド体を得ている.しかしながらアレン合成の一般性や効率の向上については十分に検討されていない.そこで我々は4のアレンへの変換方法と適応範囲について検討することにした.

4の HWE 型の脱離反応はアルコール性酸素の P = O への求核攻撃により形成する **4**員環ホスホオ キセタン中間体を経由して進行すると考えられてい る.**4**はα位 *sp*²炭素での結合角が約 120°であり通

Fig. 2. 120 Degree Bond Angle by the sp^2 Carbon is a Significantly Unfavourable Factor in Intramolecular Nucleophilic Attack of an Alcoholic Oxygen Nucleophile to P=O Phosphorous Electrophile

常のβ-ヒドロキシホスホナートのそれ(約109.5°) に比べて広角である.したがって,求核部位のアル コール性酸素と求電子部位であるリンとの距離が長 くなるため,活性化エネルギーが高くなると予測で きる(Fig. 2).したがって,効率よく反応を進行 させるためには酸素求核部位の求核性を十分に強め る必要がある.しかしながら強力な塩基の利用は基 質γ位の脱プロトン化や生成したアレンの脱プロト ン化を引き起こし,1,3-ジエンやアルキンへの異性 化が問題になる可能性がある.そこで種々の塩基を 試したところ KH 若しくは KH-18-crown-6 を塩基 に用いると最も効率よく4をアレンに変換できるこ とが明らかになった(Table 1).

次に基質 4 の R¹ 置換基の検討を行った. R¹ が四 級の Ph, t-Bu の場合目的のアレンを収率よく与え た,三級のシクロヘキシル基 (c-Hex) では KH-18-crown-6を塩基に用いると収率よくアレンを与 えた.さらに R¹=H の時も末端アレンを中程度の 収率で与えた.しかしながら R¹ が PhCH₂CH₂ の 場合と CH₃ の場合は目的のアレンが得られなかっ た.これらを基質とした場合アレンの異性体である 1,3-ジエンが得られることから基質の y 位の脱プロ トン化で異性化した後オレフィン化しているか生成 したアレンが異性化してしまうと考えられる.した がって R¹ は四級かメチン若しくは無置換に限定さ れる (Table 2).

次に4の R^2 について検討した.その結果4の R^2 は四級、メチン、メチレン、メチルのいずれの場 合もアレンに変換できることが明らかになった (Table 2).ここで4(R^1 =PhCH₂CH₂, R^2 =*t*-Bu) の時は目的のアレンは与えず、1,3-ジエンを与えた が、その逆の4(R^1 =*t*-Bu, R^2 =PhCH₂CH₂)の場 合は同様の条件で目的のアレンが得られた.したが

Table 1. Base Dependency of Olefination

t-Bu, OH Ph, P(OR) ₂			base 1.0 eq THF	► H	=•==< ^H t-Bu	
entry	R	base	18-crown-6 (equiv)	temp (°C)	time (min)	yield (%)
1	Et	BuLi		reflux	300	30
2	Et	NaH		50	30	72
3	Et	KH		60	5	92
4	i-Pr	KH	1.0	60	5	25
5	i-Pr	KH	1.0	0	15	89
6	i-Pr	KH	0.1	0	30	92
7	Et	KDA		60	60	41
8	Et	KHMDS		25	15	88
9	Er	КОН		150	80	55
10	Et	t-BuOK		40	15	62
11	Et	t-BuOCs		60	10	70

Table 2. Effects of Substituents, R^1 and R^2 on the Reaction

			KH 1.0 eq THF	R ¹ H	$\stackrel{R^1}{\longrightarrow} \stackrel{H^2}{\longrightarrow} H^$	
entry	\mathbf{R}^1	R ²	18-crown-6 (equiv)	temp (°C)	time (min)	yield (%)
1	Ph	t-Bu	0.1	0	30	92
2	Ph	c-Hex		60	10	61
3	Ph	$Ph(CH_2)_2$		60	20	71
4	Ph	Me		60	20	40
5	Ph	Me	0.1	0	60	73
6	Ph	Ph		60	40	17
7	t-Bu	$Ph(CH_2)_2$		60	20	79
8	c-Hex	$Ph(CH_2)_2$	0.1	60	60	77
9	Н	$Ph(CH_2)_2$	1.0	60	10	42
10	t-Bu	Ph		60	60	55

って前者からの1,3-ジエンの形成はアレンの異性 化ではなく,基質の y 位脱プロトン化による異性化 を経由していると考えられる (Scheme 4).

以上,一部置換基に制限が有るものの,アルケニ ルホスホナートから2段階でのアレンの合成に成功 した.次にワンポットでのアレン合成を試みること にした.

4. メチレンビスホスホナートを基質とするワン ポットアレン合成法の開発

上述のアレン合成の基質となるアルケニルホスホ

Scheme 4. Formation of 1,3–Diene is Due to Isomerization of Substrate

ナート1はメチレンビスホスホナート8とアルデヒ ドを用いたHWEにより合成される.したがって8 を出発物質として2つのカルボニル化合物で順次 HWE反応を行えばワンポットでアレンが合成でき るはずである.この方法は逆合成的にシンプルなア レン合成法として有用である.すなわちアレンの置 換様式を2つのカルボニル化合物の選択により決定 できる.

このワンポットアレン合成法で問題になるのは, 既に Table 1, entry 1 で示すように中間体のリチウ ムアルコキシド (Li-4) がそのままではアレンへの 変換効率が悪いことである. そこで Li-4 のメタル 交換を意図して種々の塩基を添加したところ、当量 の t-BuOK を添加したとき最も収率よくアレンが 合成できることが明らかになった. そこで次にメチ レンビスホスホナートからの一挙合成を試みた. メ チレンビスホスホナート8を NaH 処理後, PhCHO を加え、この溶液を-78℃ に冷却し LDA 処理後、t-BuCHOを加える. ここで中間体のリチ ウムアルコキシド Li-4 が系中に生成しているはず である。引き続き、t-BuOK を添加し室温で1時間 反応させると、目的のアレンが65%収率で得られ た (Scheme 5). 同様の反応を種々のアルデヒドや ケトンを用いて行ったところ目的の置換様式のアレ ンが得られた.

5. 不斉アレン合成への展開

今まで多くの不斉 HWE 反応が報告され,軸性 不斉を有するオレフィンが得られている.¹¹⁾ HWE 反応を用いた不斉アレン合成反応は既に田中らによ りプロキラルなケテンに対するキラルホスホナート

Scheme 5. One-Pot Synthesis of Allene

の反応により達成されている.¹²⁾ この反応ではケテ ンに対するリチウムホスホナートの求核付加反応に より生じるエノラート中間体を経由してアレンが合 成される.一方, α, β-不飽和ヒドロキシホスフィ ンオキシド4を経由したアレン合成法に関しては不 斉反応への展開は未だ報告されていない.冒頭に記 述したように,当研究室でもキラルジエーテル配位 子制御による不斉 HWE 反応の開発に成功し軸性 不斉を有するオレフィンを最高 90%ee の選択性で 定量的に得ることに成功している.⁵⁾ そこで,この キラルジエーテル配位子制御による不斉合成法をそ のままアレン合成に適応したところ光学活性なアレ ンが得られることが解った.この不斉アレン合成に ついては現在,配位子,反応条件等の最適化を行っ ているところである.

6. ビスアルケニルホスホナートの有機リチウム 試薬及びリチウムアミドによる環化反応⁷⁾

我々はアルケニルホスホナートを基盤とする炭素 一炭素結合形成反応の開発の一環として、ビスアル ケニルホスホナートの有機リチウム試薬によるダブ ルマイケル型分子内環化反応及びリチウムアミドに よる環化反応を試みることにした.まず始めにアル ケニルホスホナート1(R¹=CH₃)をフェニルリチ ウムで反応した後、水で処理すると分子間のダブル マイケル型付加体が主生成物として得られることが 明らかになった(Scheme 6).この結果から本反応 が分子内のダブルマイケル型付加環化反応に適応で きることを確信した.そこで2.2当量のPhLiの THF 溶液中に-78°C でビスアルケニルホスホナー ト 6a(n=6)を加えたところ3種類の6員環が合 計収率 85%で得られた.この3種類を分離したと ころ trans-付加環化体(trans-9)が64%, cis-付加

Scheme 6. Conjugate Addition-Michael Reaction of Propenylphosphonate

Scheme 7. Possible, but Ruled-Out, Formation of 9a

O () () () () () () () () () () () () ()			RLi $()_{n-5}$ $P(OEt)_2$ ($P(OEt)_2$ + R O trans-9		$ \begin{array}{c} O \\ H \\$		O II P(OEt) ₂ OEt) ₂
entry	6	n	R-Li	9 + 10 / %	trans-9/%	cis-9/%	10/%
1 ^{<i>a</i>)}	а	6	Ph	68	39	11	18
2	а	6	Ph	85	64	9	12
3	а	6	1-Naph	94	58	0	39
4	а	6	2-Naph	71	44	0	27
5	а	6	Bu	58	$20^{b)}$	0	38
6	b	5	Ph	84	49	23	12

 Table 3. Conjugate Addition-Michael Tandem Cyclization of 6 with Organolithiums

a) A solution of PhLi was added to a solution of **6a**. b) The stereochemistry was tentatively assigned by analogy for **9a** (n=6, R=Ph).

環化体 (cis-9) が 9%そして α , β -不飽和環化体 10 が 12%収率で得られていた (Table 3, entry 2). そ の他種々の基質と有機リチウム試薬を用いた場合の 結果を Table 3 に示す. ビスアルケニルホスホナー ト 6b (n=5)を基質とした場合は 3 種類の 5 員環 が合計 84% 収率で得られた Table 3 (entry 6). BuLi を求核剤として用いた場合は付加環化体の割 合が減少し α , β -不飽和環化体 10 の割合が増加し た Table 3 (entry 5).

10 の生成は有機リチウム試薬による6の α-ビニ ルプロトンの直接脱プロトン化とそれに引き続くマ イケル型環化反応により生成すると考えられる.そ こで, Scheme 7 に示すように付加環化体9が10 に 対する有機リチウム試薬の共役付加により生成して いる可能性がある.しかしながら,実際に10を2 当量のPhLiで処理したところ9は得られず10の 回収に終わった.したがって,この経路による9の 生成は否定される.

次に6をLDA 処理するとα, β-不飽和環化体10 のみが選択的に得られることが解った.6(n=6) と6(n=5)を基質とした場合それぞれ82%と75% 収率で6員環と5員環を与えた.前述のアレン合成 において,アルケニルホスホナートのLDA 処理と それに引き続くカルボニル化合物の求電子付加反応 でα,β-不飽和の付加体4が得られることを示した. LDA による環化反応はちょうどこの求電子剤がカ ルボニル化合物から分子内のマイケル受容体に変わ った同様の反応と見なせる.

777

次節ではこの環化反応の応用として、キラルなビ スアルケニルホスホナートを基質とした反応と環化 体からのキラルホスフィンリガンドの誘導について 述べる.

7. キラルビスアルケニルホスホナートを基質と した環化反応

LDA によるビスアルケニルホスホナートの環化 反応をキラルな基質を用いることでキラルな環化体 を得る試みを行った.基質 11 は L-酒石酸エステル から 3 段階で合成した.11 を THF 中 - 78℃で LDA 処理すると環化体 2-(S)-12 と 2-(R)-12 が 合計収率 86%約 3:1 の比率で得られた(Scheme 8a).主生成物である 2-(S)-12 は LiAlH₄による 1,4-還元反応で trans-13 を選択的に与えた.一 方,ジイミド還元では cis-13 が主生成物として得 られた(Scheme 8b).cis-13 はシラン還元により 容易にビスホスフィン 14 への変換が可能である (Scheme 8c).14 の二個の OMe 官能基がない desmethoxy-14 は阿知波らによって有効な不斉還元の リガンドとして既に開発されている.¹³⁾ 14 も同様の 不斉還元反応に有効であることが確認されている.

11 を LDA 処理すると環化体のリチウムホスホ ナート 12-Li が中間体として存在するはずである. これを炭素求電子剤でトラップすれば新たな不斉点 が構築できるはずである.実際に12-Li 溶液にベン ズアルデヒドを加えると57%収率で単一のジアス テレオマーとして15が得られた.15は6段階で環 状モノホスフィンカルボン酸16に変換できた (Scheme 9a).16の二個のOMe 官能基がない desmethoxy-16 は南らによって有効な不斉アリル化の リガンドとして既に開発されている.¹⁴⁾16を同様の 不斉アリル化反応に適用したところ77%収率93% ee でキラルジエステルが得られた(Scheme 9b).

8. まとめ

以上,アルケニルホスホナートへの共役付加反応 又は直接のα位ビニルプロトンの脱プロトン化に より形成されるα位アニオンと炭素求電子剤の反 応に基づく炭素--炭素結合形成反応を検討した.そ して,本反応を基盤とした簡便なアレン合成法の開 発と環状ホスホナート合成法の開発に成功した.得 られた環状ホスホナートは有効なキラルリガンドへ 変換できることを示した.

謝辞 本総説で紹介した研究成果は京都大学薬 学研究科薬品合成化学分野で行われたものであり, 終始ご指導を賜りました富岡清教授に深謝致しま

Scheme 8. Stereoselective Cyclization of 11 and Reduction of 12

Scheme 9. Synthesis of Phosphinocarboxylic Acid Ligand for Allylic Alkylation

す.また研究を推進するにあたりご協力頂きました 共同研究者の皆様に感謝致します.なお本研究は文 部省科学研究費助成金により行われたものであり併 せて感謝致します.

REFERENCES

- Present address: Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka 564–8680, Japan.
- a) Nishimura K., Ono M., Nagaoka Y., Tomioka K., J. Am. Chem. Soc., 119, 12974– 12975 (1997); b) Tomioka K., Okuda M., Nishimura K., Manabe S., Kanai M., Nagaoka Y., Koga K., Tetrahedron Lett., 39, 2141– 2144 (1998); c) Ono M., Nishimura K., Nagaoka Y., Tomioka K., Tetrahedron Lett., 40, 1509–1512 (1999); d) Ono M., Nishimura K., Nagaoka Y., Tomioka K., Tetrahedron Lett., 40, 6979–6982 (1999); e) Ono M., Nishimura K., Nagaoka Y., Tomioka K., Angew. Chem. Int. Ed., 40, 440–442 (2001).
- a) Yasuhara T., Nagaoka Y., Tomioka K., J. Chem. Soc., Perkin Trans. 1, 2233–2234 (1999); b) Yasuhara T., Nagaoka Y., Tomioka K., J. Chem. Soc., Perkin Trans. 1, 2901– 2902 (2000).
- a) Nakagawa Y., Kanai M., Nagaoka Y., Tomioka K., *Tetrahedron Lett.*, 37, 7805– 7808 (1996); b) Nakagawa Y., Kanai M., Nagaoka Y., Tomioka K., *Tetrahedron*, 54, 10295–10307 (1998); c) Mori T., Kosaka K., Nakagawa Y., Nagaoka Y., Tomioka K.,

Tetrahedron: Asymmetry, **9**, 3175–3178 (1998).

- 5) Mizuno M., Fujii K., Tomioka K., Angew. Chem. Int. Ed., 37, 515-517 (1998).
- Nagaoka Y., Tomioka K., J. Org. Chem., 63, 6428-6429 (1998).
- Nagaoka Y., Tomioka K., Org. Lett., 1, 1467– 1469 (1999).
- a) Horner L., Pure Appl. Chem., 9, 225-244 (1964); b) Wadsworth W.S. Jr., Emmons W.D., J. Am. Chem. Soc., 83, 1733-1738 (1961); c) Boutagy J., Thomas R., Chem. Rev., 74, 87-99 (1974); d) Nicolaou K. C., Harter M. W., Gunzner J. L., Nadin A., Liebigs Ann., 1283-1301 (1997); e) Wadsworth W.S. Jr., Organic Reactions, Vol. 25, John Wiley & Sons, Inc., New York, 1977, pp. 73-253.
- 9) Atta F. M., Betz R., Schmid B., Schmidt R. R., Chem. Ber., 119, 472–481 (1986).
- Marszak B. M., Simalty M., Seuleiman A., Tetrahedron Lett., 1905–1908 (1974).
- 11) Chiral Phosphonate Controlled Dissymmetric Olefination.: a) Tomoskozi I., Janzso G., *Chem. Ind. (London)*, 2085–2086 (1962); b) Bestmann H. J., Tomoskozi I., *Tetrahedron*, 24, 3299–3319 (1968); c) Bestmann H. J., Lienert J., *Angew. Chem. Int. Ed. Engl.*, 8, 763–764 (1969); d) Bestmann, H. J., Heid E., Ryschka W., Lienert J., *Liebigs Ann. Chem.*, 10, 1684–1687 (1974); e) Musierowicz S., Wroblewski A., Krawczk H., *Tetrahedron Lett.*, 75, 437–440 (1975); f) Musierowicz S.,

Wroblewski A. E., Tetrahedron, 36, 1375-1380 (1980); g) Gais H.-J., Schmiedl G., Ball W. A., Bund J., Hellmann G., Erdelmeier I., *Tetrahedron Lett.*, **29**, 1773–1774 (1988); h) Rehwinkel H., Skupsch J., Vorbruggen H., Tetrahedron Lett., 29, 1775–1776 (1988); i) Takahashi T., Matsui M., Maeno N., Koizumi T., Heterocycles, 30, 353-357 (1990); j) Harmat N. J. S., Warren S., Tetrahedron Lett., 31, 2743-2746 (1990); k) Takahashi T., Matsui M., Maeno N., Koizumi T., Heterocycles, 30, 353–357 (1990); l) Narasaka K., Hidai E., Hayashi Y., Gras J.-L., J. Chem. Soc., Chem. Commun., 102-104 (1993); m) Furuta T., Iwamura M., J. Chem. Soc., Chem. Commun., 2167-2168 (1994). n) Hanessian S., Delorme D., Beaudoin S., Leblanc Y., J. Am. *Chem.* Soc., **106**, 5754–5756 (1984); o) Hanessian S., Beaudoin S., Tetrahedron Lett., 33, 7655-7658 (1992); p) Bennani Y., Hanessian S., *Tetrahedron*, **52**, 13837–13866 (1996); q) Denmark S. E., Chen C.-T., *J. Am. Chem. Soc.*, **114**, 10674–10676 (1992); r) Denmark S. E., Rivera I., *J. Org. Chem.*, **59**, 6887–6889 (1994); s) Abiko A., Masamune S., *Tetrahedron Lett.*, **37**, 1077–1080 (1996). Chiral Ligand Controlled Dissymmetric Olefination: t) Toda F., Akai H., *J. Org. Chem.*, **55**, 3446– 3447 (1990); u) Arai S., Hamaguchi S., Shioiri T., *Tetrahedron. Lett.*, **39**, 2997–3000 (1998); v) Kumamoto T., Koga K., *Chem. Pharm. Bull.*, **45**, 753–755, (1997).

- 12) Yamazaki J., Watanabe T., Tanaka K., *Tetrahedron: Asymmetry*, **12**, 669–675 (2001).
- 13) Inoguchi K., Achiwa K., Synlett, 49–51 (1991).
- Okada Y., Minami T., Umezu Y., Nishikawa S., Mori R., Nakayama Y., *Tetrahedron:* Asymmetry, 2, 667–676 (1991).