-Reviews-

プロスタグランジン E 受容体サブタイプ EP4 欠損マウスの作製とその表現型の解析

瀬木 恵 里

京都大学大学院薬学研究科, 〒606-8501 京都市左京区吉田下阿達町

A Study for Functions of Prostaglandin E Receptor EP4 Subtype by Analysing Knockout Mice

Eri SEGI

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

(Received September 14, 2000)

The physiological role of the prostaglandin (PG) E_2 receptor EP4 subtype was investigated by the generation of EP4-deficient mice by gene targeting. Loss of the EP4 receptor was not lethal in utero, but most EP4 (-/-) neonates became pale and lethargic approximately 24 h after birth, and died within 72 h. Less than 5% of the EP4 (-/-) mice survived and grew normally more than a year. Marked congestion in the pulmonary capillaries were observed before death, suggesting that EP4 (-/-) neonates had left-sided heart failure. Histological examination revealed that the ductus arteriosus in dead neonates remained open, while it was partially closed in the survivors. *In situ* hybridization study showed that EP4 mRNA was strongly expressed in the ductus. The treatment of indomethacin, an inhibitor of PG synthesis, on wild-type fetus induced constriction of ductus arteriosus, while the ductus in EP4 (-/-) fetus was insensitive to indomethacin. These results suggest that neonatal death is at least partly due to patent ductus arteriosus, and that the EP4 receptor plays a role in the regulation of the patency of this vessel. They also indicate that the normal function of the EP4 receptor is essential in neonatal adaptation of the circulatory system.

Key words-prostaglandin; EP4 receptor; ductus arteriosus; knockout

1. 緒言

プロスタノイドはプロスタグランジン (Prostaglandin; PG) とトロンボキサンよりなり、様々な 生理作用を持つ一群の生理活性脂質である. プロス タノイドは細胞外からの刺激に応じて活性化するホ スフォリパーゼ A2の作用より、膜リン脂質から切 り出されるアラキドン酸を基質として、シクロオキ シゲナーゼ (cyclooxygenase; COX) の働きで産生 されるプロスタノイドに共通の前駆体である PGH2 を介して各種の PG 合成酵素の作用で産生される. プロスタグランジンの1つであり, 生体内で最も大 量にかつ広範囲の組織で産生される PGE,は、 **PGH**₂から **PGE** 合成酵素によって生成され、細胞 外に分泌され、産生細胞自身やその周辺細胞の細胞 膜上に存在する受容体と結合して作用を発揮する (Fig. 1).¹⁾種々のアゴニスト・アンタゴニストを用 いる薬理学的研究により、まず、PGE 受容体には 情報伝達を異にする4種類のサブタイプ (EP1, EP2, EP3, EP4 と分類) が存在することが明らかに された. すなわち、EP1 は細胞内 Ca 上昇系、EP2 と EP4 は cAMP 上昇系, EP3 は cAMP 減少系に

それぞれ共役する.^{2,3)} 近年. 4 種類の PGE 受容体 サブタイプの遺伝子クローニングが行われ.発現細 胞を用いての受容体の構造とリガンド結合特異性, 共役 G 蛋白、情報伝達系、イソフォームの有無な どの生化学的性質 (Table 1), また, Northern blot や in situ hybridization によってマウスの組織・細 胞における受容体 mRNA の発現部位の同定 (Fig. 2)、さらには、遺伝子の発現調節機構の解析などが 行われている.⁴⁾これらの研究成果は、各 PGE サブ タイプ受容体に対する選択性の高いアナログの合成 を可能とするばかりではなく、薬剤の代謝、適用に 必要な生体情報を与えるものである。しかし、各サ ブタイプ受容体に対する選択性の高いアゴニスト, アンタゴニストが十分に利用できない現状において は、各サブタイプ受容体が生体内においてどのよう な生理条件下で機能するのか、その機能は個体レベ ルでの生体作用でどれほどに重要であるかなどにつ いて明らかにすることは非常に困難である. そこ で、この問題にアプローチするためには、明らかに された PGE 受容体の遺伝子操作により、PGE 受容 体遺伝子を欠損するノックアウトマウスを作製し.

本総説は、平成11年度日本薬学会近畿支部奨励賞の受賞を記念して記述したものである。

Fig. 1. Biosynthesis of PGE₂ PGE₂ is synthesized from arachidonic acid by the actions of cyclooxygenase and PGE synthase.

-						
Receptor type	Amino acids	Kd (nM) [³ H] PGE ₂	Rank order of binding affinity	Signaling G protein	Gene locus	Isoforms
EP1	405	21	$PGE_2 \!\!>\!\! I_2 \!\!>\!\! E_1 \!\!\gg\!\! F_{2\alpha}$	[Ca ²⁺] ↑ (G)?	19p 13.1 (human) chr 8 (mouse)	2 (rat)
EP2	362	27	$PGE_2 = E_1 \gg I_2 \gg F_{2\alpha}, D_2$	cAMP ↑ Gs	not identified	None
EP3	365	3	$PGE_2 = E_1 \gg I_2 > D_2 > F_{2\alpha}$	cAMP↓ [Ca ²⁺]↑ Gi(Gq, Gs)	1p 31.2 (human) chr 3 (mouse)	7 (human) 3 (mouse)
EP4	513	11	$PGE_2 = E_1 \gg I_2, F_{2\alpha}, D_2$	cAMP ↑ Gs	5p 13.1 (human) chr 15 (mouse)	None

Table 1. Molecular and Biochemical Properties of the Prostaglandin E Receptor Subtypes

Fig. 2. Distribution of the PGE Receptor Subtype mRNAs in Various Mouse Tissues

それを用いた研究の遂行が必要であると考えた.

そこで筆者は、各々の PGE 受容体サブタイプ遺 伝子を欠損させたマウスを作製し、それらの表現型 の逐一的な解析を行うことを目的として本研究を実 施した.その結果、4 種類の PGE 受容体欠損マウ スの作製に成功し、それらの表現型として、EP4 受容体欠損マウスは新生児死亡を起こすことを発見 した.⁹また、EP3 受容体欠損マウスは免疫性発熱 に無応答になること、⁹ EP2 受容体欠損マウスは排 卵・受精の過程に異常が発症すること⁷を明らかに することができた.本総説では、これら欠損マウス の表現型のうち、EP4 受容体欠損マウスに焦点を あてて記述する.

実験結果

2-1. PGE 受容体 EP4 サブタイプ欠損マウスの 作製 マウス 129/Sv の genome DNA ライブラ リーより EP4 受容体遺伝子を単離し、遺伝子構造 のマッピングを行った. これらの解析から主要な コーディング領域を含むエキソンは第2エキソンで あることが判明した、ターゲティングベクターはこ れらの領域にネオマイシン耐性遺伝子を置換するこ ととし. genome DNA との相同領域外にもう1つ のマーカー遺伝子である単純ヘルペスウイルス由来 のチミジンキナーゼ遺伝子を導入することとした (Fig. 3A). 常法に従い、ターゲティングベクター を 129/Ola 由来の ES 細胞にエレクトロポレーショ ン法により導入し、相同組み換え体のクローン選別 を行った.得られたクローンをマウスの胚盤胞にマ イクロインジェクションし、キメラマウスを作製し た. キメラマウスを雌の野生型マウス (C57BL/6) と交配させることにより (129/Ola)X(C57BL/6) を 遺伝的 background に持つ F1 ヘテロマウス. さら にそれら F1 マウス同士をかけ合わせ F2 マウス (野生型、ヘテロ変異体、ホモ変異体)を得た。相

Fig. 3. Disruption of the Gene Encoding the EP4 Receptor

(A) Strategy used for EP4 gene targeting. Construct of the targeting vector, organization of the EP4 gene, and the structure of the targeted genome are shown. Restriction sites are indicated: B: Bam HI, and N: Nsi I. Arrowheads indicate PCR primers. The mutated allele is identified by using the primers 401 and 402. The wild type allele is identified by using the primers 401 and 403. The thick line indicates the DNA probe used in Southern hybridization. TK: thymidine kinase gene, Neo: neomycin-resistant gene. (B) Southern blot analysis of Nsi I-digested genomic DNA from a representative litter of 12 pups. +/+: wild type, +/-: heter-ozygote, -/-: homozygote. (C) Northern blot analysis. Total RNA was isolated from the intestine and spleen of newborn mice and was used for hybridization with a specific probe. Hybridization signals for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are shown in the lower panel.

同組換えを起こした ES 細胞の選択、ヘテロ変異体、ホモ変異体の遺伝子型の確認は genome DNAの Southern 解析により行った (Fig. 3B). また、実際に受容体が欠損していることを確認するために、Northern 解析を行った (Fig. 3C).

2-2. EP4 受容体欠損マウスの死因についての解

析 EP4 受容体ヘテロ変異体のかけ合わせにおいて,離乳後のF2マウスの遺伝子型を解析したところ,EP4ホモ変異体は野生型に対し,約5%程度しか存在せず,EP4ホモ変異体は出生以降の生育過程で致命的な障害のあることが示唆された.そこで,このマウスにおける死因の解析を試みた.ま

ず,胎生中期・後期において母体内に生存している 仔の遺伝子型を解析したところ,EP4ホモ変異体 は野生型と同程度存在していた.しかしながら,生 後3日目において調べたところ,既にその大部分が 死亡していることが確かめられた (Table 2).そこ で,周産期において死亡に至るまでの経過を詳細に 観察したところ,ホモ変異体は生後すぐに呼吸を開 始し,外見上野生型と異なるところは見られず,ま た,哺乳行動も認められた.しかし,生後24時間 以内に衰弱が始まり皮膚が蒼白となり,大多数は生 後72時間以内に死亡に至ることが判明した.

次に衰弱している EP4 ホモ変異体の組織的検討 を行ったところ,肺・心血管系に異常が存在するこ とが判明した.すなわち,肺胞構造が乱れており毛 細血管のうっ血がみられ,循環障害が起きているこ とが示唆された (Fig. 4).また,左心室,肺動脈の 拡張も観察された.これらの結果は左心室不全によ る肺循環系のうっ血と体循環系の循環不全が起きて いることを示している.これらの異常を引き起こし ている原因組織を解析するために,胎児循環系にお ける EP4 受容体 mRNA の発現解析を *in situ* hybrid-

Table 2. Genotypes of Progenies of Heterozygote Intercrosses

Genetic	Time of analysis	Genotype of progenies from $(+/-)\times(+/-)$		
Dackground		+/+	+/-	-/-
	E 14.5 fetuses	16	41	20
(120/Ola)×	E 19.5 fetuses	40	67	37
(C57BL/6)	3-day-old neonates	181	309	5
(C57BL/6)	3-day-old neonates	50	84	0

The genotypes and numbers of living mice and fetuses are shown.

Vol. 121 (2001)

ization 法を用いて行ったところ,動脈管と呼ばれる胎児期特異的に機能する血管平滑筋にEP4mRNAが大量に発現していることが明らかになった(Fig. 5). この発現は動脈管特異的であり,隣接する大動脈・大静脈にはほとんど発現が認められなかった.また,この発現は少なくとも胎生中期であるE15日から出生後24時間の時点まで認められた(data not shown).

動脈管は肺呼吸を行わない胎児期において、肺動 脈と大動脈をバイパスしている血管であり、生後呼 吸を開始するとともに閉鎖することが知られてい る.8 そこで、生後における動脈管の様子を凍結切 片作成法により経時的に観察したところ, 野生型で は生後呼吸を開始するとともに動脈管が収縮し始 め、約5時間で完全に閉鎖に至ったが、EP4ホモ 変異体では生後24時間が経過しても動脈管の閉鎖 が認められず、死亡するまで閉鎖不全を起こしてい ることが判明した (Fig. 6). 生後6時間における野 生型と EP4 ホモ変異体の動脈管をさらに観察した ところ,野生型の動脈管平滑筋では肥厚が認めら れ、内皮細胞により血管内部が閉鎖していたのに対 し、ホモ変異体の動脈管平滑筋では全く肥厚はな く、血管収縮が起こっていないことが判明した (Fig. 7). 一方、少数であるが生存した EP4 ホモ変 異体の動脈管は、完全ではないものの部分的な閉鎖 を起こしていた (Fig. 8). 死亡したすべての EP4 ホモ変異体は動脈管の閉鎖不全を起こしていたこ と、また生存した少数のホモ変異体は不完全である ものの動脈管収縮を起こしていたことより、大部分 の EP4 受容体欠損マウスの死亡原因は動脈管の閉 鎖不全によることが示唆された.

EP4 受容体ホモ変異体において動脈管閉鎖の表 現型にばらつきが生じる原因の1つとして、マウス の遺伝的背景の違いによることが考えられる.戻し 交配により遺伝的背景を C57BL/6 に近づけた EP4

Fig. 4. Histological Analysis of Lungs from a Wild Type (A) and a Homozygous (B) Mouse Sacrificed at 30 h after Birth Marked congestion of the pulmonary capillaries and disorganized alveolar structures are seen in the homozygous lung. Bar: $50 \,\mu$ m.

Fig. 5. *In situ* Hybridization of the EP4 Transcripts

Photomicrographs are thoracic sections of a wild type E18.5 fetus. These sections were hybridized with a 35 -labeled antisense RNA probe for the EP4 receptor in the absence (A, B and C) or presence (D) of an excess amount of unlabeled probe (A and C: bright-field, B and D: dark-field). Strong signals are observed in the smooth muscle layer of the ductus arteriosus. Ao: aorta, dAo: descending aorta, DA: ductus arteriosus. Bars: 200 μ m (D) and 25 μ m (C). The magnifications of micrographs A, B and D are the same.

ヘテロ変異体を用いて仔の生存率を検討したところ,生存続ける個体はなかった(Table 2). さらに,少数の生存した遺伝的背景の異なる EP4 ホモ変異体同士をかけ合わせたところ,その生存率は4回のかけ合わせ時点で35%にまで上昇した(Table 3). これらのことから,生存した EP4 ホモ変異体ではマウス系統で異なる未同定の動脈管収縮因子によって動脈管の部分的な収縮が起こったものと考えられる.このようにして生存した EP4 ホモ変異体は外観上の顕著な異常は観察されず1年以上の生存が可能であり、生殖も可能であった.

2-3. EP4 受容体欠損マウスの動脈管の性質についての解析 EP4 受容体は cAMP 上昇系に共役しており、またウサギ動脈管を用いた薬理実験からは PGE2 が cAMP 上昇を介して動脈管を弛緩させる働きを持つことが示唆されている。 のまた、筆者の研究により、マウス動脈管に EP4 受容体 mRNAが大量に発現していることが見い出された.したがって、EP4 受容体が欠損した場合、動脈管の収縮が仮説されたが、実際に表れた表現型は動脈管の収縮が仮説されたが、実際に表れた表現型は動脈管の収縮が仮説されたが、実際に表れた表現型は動脈管の収縮・強緩に関与する他

の因子の働きに変化が起きている可能性を示唆して いると考えられる、そこで、EP4ホモ変異体の動 脈管の性質がどのように変化しているかについて検 討を行った.まず、動脈管における EP4 受容体以 外の7種類のプロスタノイド受容体 (EP1, EP2, EP3, PGD 受容体 [DP], PGF 受容体 [FP], PGI 受 容体 [IP], Tromboxane 受容体 [TP]) mRNA の発現 及び受容体の内因性リガンドを合成する COX-1, COX-2の発現に変化がないかについて解析した. その結果、野生型マウスの動脈管では EP1, TP 各 受容体mRNAは中程度に、EP3, DP 各受容体 mRNA はかすかに、一方 COXs については COX-1 が中程度に発現していることが分かった.しかし、 これらの発現は EP4 受容体の発現が動脈管に局在 していることは異なり,動脈管とともに隣接する大 動脈にも発現が認められた (Table 4). さらに、こ のような発現パターンは EP4 ホモ変異体の動脈管 においても観察された (data not shown). したがっ て、EP4 受容体欠損マウスの動脈管においては EP4 受容体以外のプロスタノイド受容体が補償的 に機能しているとは考えにくい、さらに、ラット胎 仔の動脈管はインドメタシンにより収縮を起こすこ と10から、弛緩に関与する内在性のプロスタノイド

Fig. 6. Morphological Changes of Ductus Arteriosus after Birth of Wild Type Mice (Left) and EP4 (-/-) Mice (Right) Middle: the model of fetal circulation. Ductus arteriosus are shown by arrowhead. A: aorta, DA: ductus arteriosus.

の減少が動脈管閉鎖反応に関与すると考えられてい る.そこで,EP4ホモ変異体はインドメタシンに 対する感受性がどの程度変化しているかについて検 討した.妊娠最終日の母胎に5mg/kgのインドメ タシンを腹腔内に投与し4時間後に帝王切開して仔 を取り出し動脈管を観察したところ,野生型では動 脈管壁が肥厚し動脈管の収縮が観察されたのに対し, EP4ホモ変異体では動脈管の肥厚と収縮は認めら れなかった (Fig. 9).すなわち,EP4受容体欠損マ ウスではプロスタノイドが減少しても動脈管は弛緩 し続けることを示しており,この実験結果も、プロ スタノイド以外の因子が動脈管の持続的な弛緩に関 与するとする著者の仮説の妥当性を支持する.

3. 考察

3-1. 動脈管開存症と新生児死亡 4種類の PGE 受容体サブタイプについて、それぞれの受容 体サブタイプを欠損するマウスを作製したところ、 EP4 受容体欠損マウスは出生後すみやかに死亡に 至るという重篤な障害を引き起こすことを見出し た.死因として、動脈管の異常を推察した.著者の 研究と前後して、Nguyen らは EP4 受容体欠損マウ スを作製し、同様の表現型を示すことを報告し た.¹¹⁾ 異なる実験条件により作製された EP4 受容体 欠損マウスが、同じように動脈管の異常という表現 型を示したことは、この表現型が欠損マウスを作製 する上での strategy に依存するものではなく, EP4 受容体そのものの欠損によるものであることを強く 示唆する. 動脈管は胎児期において肺動脈と大動脈 をバイパスする血管である (Fig. 10). 胎生期にお いては、酸素は母胎から胎盤を経由して送られてく るため肺は機能する必要がなく、肺胞は肺胞液で満 たされている. そのため、肺血管抵抗の値は高く、 右心室から送り出されてきた血液は肺を通過しにく い. 胎児の肺血管抵抗は体循環抵抗よりも高いため に右心室からの血液の大部分は肺を通過せず動脈管 を通り直接全身へ流れ込む (右→左シャント). 生 後呼吸を開始することにより肺胞に空気が送り込ま れ肺血管抵抗は急激に低下する。それに伴い右心室 から送り込まれる血液は肺へ流れ込むようになる. 血液中の酸素分圧が上昇するのに伴い動脈管は収縮 し、体循環と肺循環が分離される、以上のように動 脈管は胎児期においては太く開いていることで胎児

Fig. 7. Patency of the Ductus Arteriosus in EP4 (-/-) Neonates

Thoracic sections of a wild type (A, C) and a homozygous (B, D) neonate sacrificed at 6 h after birth are shown. Bottom panels are magnifications of the arrowhead on each top panel. In the wild type, the ductus arteriosus is completely closed and its wall is thicken. On the other hand, in the homozygous neonate, the ductus is open and its wall is thin. Ao: aorta, dAo: descending aorta, P: pulmonary artery, DA: ductus arteriosus. Bar: $200 \mu m$ (B) and $25 \mu m$ (D).

Fig. 8. The Ductus Arteriosus in the Survived EP4 (-/-) Neonate

Thoracic sections of a wild type (A) and a survived homozygous (B) neonate sacrificed at 3 days after birth are shown. Eight surviving homozygous mice at various ages were examined, and representatives are shown. The ductus arteriosus (arrowhead) in the survived homozygous animals are almost closed. Ao: aorta, dAo: descending aorta. Bar: 200 μ m.

型循環の維持を行い、また生後は速やかに肺呼吸型 の循環に対応するために閉鎖する. すなわち動脈管 は他の大血管系とは異なり出生とそれに伴う循環系 の変化に劇的に対応する機能を有している。EP4 受容体欠損マウスは出生後も動脈管閉鎖を起こさな いことが判明した.出生後も動脈管が開いている場 合、体循環抵抗値が肺循環抵抗値よりも高いため、 胎児期とは逆に左心室から送り出されてきた血液が 動脈管を通り肺へ流入する (左→右シャント). 血 液は肺から再び左心房・左心室と血液が戻ってくる ため、肺・左心房・左心室に高い負荷を与える。肺 においては肺血流の増加が肺の換気スペースを減少 させるため呼吸状態が悪化する. 左心室においては 左室不全が起こり、肺うっ血、肺浮腫を起こし、呼 吸状態を更に悪化させる.また、全身に流れる血液 量が減少するため、末梢においては循環不全が引き

Table 3. Survival Ratio of EP4-Deficient Mice Having (129/Ola)×(C57BL/6) Genetic Background

	Parental genotype	Survival ratio*
	ơ" ♀	
F2	(+/-)×(+/-)	2.8%
F3	$(-/-) \times (+/-)$	4.0%
F4	$(-/-) \times (-/-)$	4.6%
F5	$(-/-) \times (-/-)$	29.6%
F6	$(-/-) \times (-/-)$	34.5%

* Compared with +/+ littermate (F2), +/- littermate (F3 & F4) and offspring of (+/+)×(+/+) mate (F5 & F6).

起こされる. このような所見 (肺うっ血, 肺動脈・ 左心室の拡張, 末梢循環不全) は実際に EP4 ホモ 変異体で観察されており, EP4 受容体欠損マウス は出生後の動脈管の閉鎖不全により, 肺のうっ血を 伴う左心室不全により死亡したものと考えられる.

3-2. 動脈管の弛緩に関わるプロスタノイドの役割 従来より妊娠後期の母体にインドメタシンなどの PG 合成阻害剤を投与した場合,胎児の動脈管収縮が起こり,その結果,胎児の肺に高負荷がかかることで出生後肺高血圧症を引き起こすことが知られていた.^{12,13)} これらの症例を受けてラットなどを

Table 4.The Expression of Prostanoid Receptors and Cyclo-
oxygenases in Embryonic Ductus Arteriosus and Aorta

	Relative grain densities in <i>in situ</i> hybridization		
	Ductus arteriosus	Aorta	
EP1	#	#	
EP2	-	-	
EP3	+	+	
EP4	##	+	
IP	-	-	
TP	#	#	
FP	_	-	
DP	+	+	
COX-1	#	#	
COX-2	-	-	

Relative grain densities: #: very high, #: moderate, +: low, -: background level.

Fig. 9. Effect of Indomethacin on the Fetal Ductus Arteriosus

The ductus arteriosus of a wild type (A, C) and a EP4 (-/-) (B, D) fetus are shown after four hours exposure to indomethacin. Bottom panels are magnified on upper panels. Indomethacin (5 mg/kg) was administered to E19.0 pregnant EP4 (+/-) mice intraperitoneally. The ductus arteriosus of the EP4 (-/-) embryo remains open, while constriction of the vessel has occurred in the wild type littermate.

Fig. 10. Model of Fetal and Neonatal Circulations

用いて動脈管に対する in vivo でのインドメタシン の作用が解析されている.10 ラットにおいてインド メタシンによる収縮は胎生後期の動脈管で起こり出 生直前に最も強い収縮を示す. このことは胎児の血 中に存在するプロスタノイドが動脈管の弛緩を持続 的に引き起こしており、出産直前にはその作用が最 大になることを示唆している。また、in vitro では ウサギ動脈管を用いた PGE2 に対する薬理学検討が 行われており、高酸素下で収縮させた動脈管を PGE2が濃度依存的に弛緩させる働きを持つことが 示されている.⁹ PGE 受容体サブタイプの内,血管 弛緩に働くものは cAMP 上昇系に共役する EP2, EP4 受容体であり、動脈管の弛緩に関わっている のはこれらの受容体であることが予想される。筆者 は動脈管における PGE 受容体の発現を解析し.動 脈管には EP4 受容体が動脈管特異的に大量に発現 していることを見い出した.一方 EP2 受容体は動 脈管にはほとんど発現が認められなかった。このこ とは PGE。に対する動脈管の弛緩作用は EP4 受容 体を介している可能性を示唆するものである. また、 EP4 受容体欠損マウスの動脈管はインドメタシン に対し収縮を示さなかったことも、EP4 受容体が 内在性の PGE, による弛緩作用に働いていることを 支持するものと言える。胎児において血中のプロス タノイド濃度が新生児と比較して高いことが知られ ているが.14この理由として、胎盤でプロスタノイ ド合成能が高いこと,15)また酸素呼吸していないた め肺で働く代謝酵素の活性が弱いこと10が考えられ る.

3-3. EP4 受容体欠損マウスの動脈管の性質 EP4 受容体が動脈管の弛緩に働いているのであれ ば, EP4 受容体欠損マウスの動脈管においてまず 予想される表現型として胎児期の動脈管の収縮が考 えられる.しかしながら,実際に EP4 受容体欠損 マウスで現れた動脈管の異常は生後における動脈管 の閉鎖不全であった.このことは EP4 受容体を欠 損した動脈管は単に弛緩作用の欠失にとどまらない 性質の変化を起こしていることを示している. すなわち EP4 受容体欠損マウスの動脈管の性質と して次の 2 点が想定される:

- 1) EP4 受容体がないのにも関わらず, 胎児期の拡張を維持している.
 - (拡張作用に関わる他の経路が存在)
- 生後に血中の酸素濃度が上昇しているにも関わらず、動脈管の閉鎖が認められない。
 (収縮作用に関わる経路の減弱)

ところで, EP4 受容体以外のプロスタノイド受 容体も動脈管の収縮・拡張に関与していることが薬 理実験から予想されている.¹⁷⁾ すなわち, EP4 受容 体と同様 DP 受容体は弛緩に関与し, また EP3 受 容体, TP 受容体は動脈管の収縮に関与している可 能性が示唆されている. 筆者は EP4 欠損体の動脈 管においてプロスタノイド受容体の発現が変化する ことで動脈管の拡張や収縮能が変化している可能性 を考え, 動脈管における各受容体の発現を野生型と 欠損体で比較した.しかしながら,両者に発現の違 いは観察されなかった.したがって, EP4 欠損マ ウスの動脈管の変化はプロスタノイド受容体以外の 働きによるものと考えられる.

現在のところ, EP4 受容体欠損マウスの動脈管 がどのような性質に変化しているかについての詳細 は分かっておらず,今後の課題である.プロスタノ イド以外に動脈管の拡張・収縮を調節している因子 には,拡張因子としては NO,収縮因子として血中 酸素分圧の上昇,エンドセリンなどが知られてい る.¹⁸⁻²⁰⁾この内で血中酸素分圧の上昇による収縮 は,大動脈では見られないもので動脈管に特異的な 機構が存在すると考えられる.現在のところ,酸素 感受性の収縮のメカニズムについての詳細は分かっ ていないが,4-aminopyridine 感受性の K⁺ channel の関与の可能性²¹⁾が示唆されており,EP4 受容体欠 損マウスの動脈管がこれらの因子に対しどのような 反応性を持つかは検討されるべき興味深い課題であ る.

3-4. 動脈管開存症との関連 臨床において新 生児期での動脈管閉鎖不全は動脈管開存症と呼ば れ、未熟児では10%以上の頻度で起こる22).原因 としては、血中のプロスタグランジン量が高いこ と、酸素に対する反応性が低いことなどが挙げられ ており、治療法としてはインドメタシン投与が用い られている.しかし、インドメタシンの副作用とし て腎不全・出血・大腸炎などが存在し、外科的処置 を併用することも多い。今回の検討より PGE2 によ る動脈管弛緩作用は EP4 受容体が介していると考 えられ、より動脈管に選択な薬物として、EP4ア ンタゴニストの投与が考えられる.また、肺動脈閉 鎖症などの先天的心疾患児では、動脈管が開いてい ることが生存に必要であり、手術前に PGE1 を投与 することで動脈管を開かせているが、このような場 合も EP4 アゴニストを投与することでより副作用 が少なくなる可能性が考えられる. しかしながら今 回の EP4 受容体欠損マウスの解析からも EP4 受容 体そのものに異常が存在する場合は動脈管開存症を 引き起こすことが判明しており、この場合はインド メタシンや EP4 アンタゴニスト以外の治療が必要 になると考えられる. 最近, COX-1, COX-2の両 者を欠損したマウスでの表現型が報告され,23) EP4 欠損マウスと同様に生後24時間以内に死亡し、動 脈管が閉鎖していないことが判明し、産生系からも 動脈管におけるプロスタノイドの重要性が示され た. また、COX-1, COX-2 をそれぞれ欠損させた マウスではこのような表現型が表れないことか ら,²⁴⁻²⁶動脈管に働く PGE₂は COX-1, COX-2 両 者から産生されるものと考えられる.

4. 結語

筆者は PGE 受容体 EP4 サブタイプ欠損マウスの 作製とその表現型に関する解析を行い、これらマウ スの約 95% が出生後数日以内の新生児期に死亡す ることを見い出し、その死亡原因は、胎児循環系で ある動脈管の閉鎖不全による血液循環の異常が引き 起こす心不全にあることを示唆した. また、出生直 前の胎児動脈管には EP4 受容体 mRNA が大量に発 現していることを見い出し、PGE2は EP4 受容体 を介して動脈管の収縮・弛緩反応を制御している可 能性を示唆した。EP4 受容体は動脈管のみなら ず、胸腺・小腸・腎臓など様々な組織にその発現が 認められ、今後生存した EP4 受容体欠損マウスで の解析から更に多くの表現型が見いだされる可能性 がある. また他の PGE 受容体サブタイプの欠損マ ウスと比較して検討を行うことにより生体内におけ る PGE2 の作用が受容体サブタイプ毎のレベルで解 明されると期待される.

謝辞 本研究は京都大学大学院薬学研究科生体情報制御学教室において行われたものであり,終始有益な御助言並びに御指導を賜りました京都大学薬学

研究科教授 市川 厚先生に心から御礼申し上げま す.また本研究の全般にわたり御指導いただいた京 都大学医学研究科教授 成宮 周先生,同薬学研究 科助教授 杉本幸彦先生,同助手 田中智之先生, 旭川医科大学教授 牛首文隆先生,小野薬品研究所 阿瀬 善也博士,東京医科学研究所 吉田進昭教授 また教室員の方々に深く感謝いたします.なお本研 究の一部は文部省科学研究費補助金奨励研究によっ て行われたものであり併せて感謝いたします.

REFERENCES

- Moncada S., Flower R. J., Vane J. R. "Prostaglandins, prostacyclin, thromboxane A₂, and leukotriens. in: The Pharmacological Basis of Therapeutics," ed. by Gilman A. G., Good-man L. S., Rall T. W., Murad F., 7th Ed., Macmillan Publishing Co., New York, 1985, pp. 660-673.
- Coleman R. A., Kennedy I., Humphrey P. P. A., Bunce K., Lumley P. "Prostanoids and their receptors. in: Comprehensive Medicinal Chemistry Vol. 3," ed. by Hansch C., Sammes P. G., Taylor J. B., Emmett J. C., Pergaman Co., Oxford, 1990, pp. 643–714.
- Coleman R. A., Grix S. P., Head S. A., Louttit J. B., Mallett A., Sheldrick R. L., *Prostaglandins*, 47, 151–168 (1994).
- Narumiya S., Sugimoto Y., Ushikubi F., *Pharmacol. Rev.*, 79, 1193–1226 (1999).
- Segi E., Sugimoto Y., Yamasaki A., Aze Y., Oida H., Nishimura T., Murata T., Matsuoka T., Ushikubi F., Hirose M., Tanaka T., Yoshida N., Narumiya S., Ichikawa A., *Biochem. Biophys. Res. Commun.*, 246, 7-12 (1998).
- Ushikubi F., Segi E., Sugimoto Y., Murata T., Matsuoka T., Kobayashi T., Hizaki H., Tsuboi K., Katsuyama M., Ichikawa A., Tanaka T., Yoshida N., Narumiya S., *Nature*, 395, 281–284 (1998).
- Hizaki H., Segi E., Sugimoto Y., Hirose M., Saji T., Ushikubi F., Matsuoka T., Noda Y., Tanaka T., Yoshida N., Narumiya S., Ichikawa A., *Proc. Natl. Acad. Sci. U.S.A.*, 96, 10501-10506 (1999).
- Heymann M. A., Rudolph A. M., *Physiol. Rev.*, 55, 62-78 (1975).
- Smith G. C., Coleman R. A., McGrath J. C., J. Pharmacol. Exp. Ther., 271, 390–396 (1994).
- Momma K., Takao A., Pediatr. Res., 22, 567-572 (1987).
- 11) Nguyen M., Camenisch T., Snouwaert J. N.,

- 12) Levin D. L., Semin. Perinatol., 4, 35-44 (1980).
- 13) Velvis H., Moore P., Heymann M. A., *Pediatr. Res.*, 30, 62-68 (1991).
- 14) Challis J. R., Dilley S. R., Robinson J. S., Thorburn G. D., *Prostaglandins*, 11, 1041-1052 (1976).
- Gibb W., Matthews S. G., Challis J. R., *Biol. Reprod.*, 54, 654–659 (1996).
- 16) Clyman R. I., Mauray F., Heymann M. A., Roman C., *Prostaglandins*, 21, 505-513 (1981).
- 17) Smith G. C., McGrath J. C., *J. Cardiovasc. Pharmacol.*, **25**, 113–118 (1995).
- Coceani F., Kelsey L., Seidlitz E., Can. J. Physiol. Pharmacol., 72, 82-88 (1994).
- Coceani F., Kelsey L., Can. J. Physiol. Pharmacol., 69, 218–221 (1991).
- 20) Momma K., Toyono M., Pediatr. Res., 46, 311–315 (1999).

- Tristani-Firouzi M., Reeve H. L., Tolarova S., Weir E. K., Archer S. L., *J. Clin. Invest.*, 98, 1959–1965 (1996).
- 22) Gersony W. M., Pediatr. Clin. North. Am., 33, 545–560 (1986).
- 23) Resse J., Paria B. C., Brown N., Zhao X., Morrrow J. D., Dey S. K., *Proc. Natl. Acad. Sci. U.S.A.*, **97**, 9759–9764 (2000).
- 24) Langenbach R., Morham S. G., Tiano H. F., Loftin C. D., Ghanayem B. I., Chulada P. C., Mahler J. F., Lee C. A., Goulding E. H., Kluckman K. D., Kim H.S., Smithies O., *Cell*, 83, 483-492 (1995).
- Dinchuk J. E., Car B. D., Focht R. J., Jhonston J. J., Jaffee B. D., Covington M. B., Contel N. R., Eng V. M., Collins R. J., Czerniak P. M., Gorry S. A., Trzaskos J. M., *Nature*, 378, 406–409 (1995).
- 26) Morham S. G., Langenbach R., Loftin C. D., Tiano H. F., Vouloumanos N., Jennette J. C., Mahler J. F., Kluckman K. D., Ledford A., Lee C. A., Smithies O., Cell, 83, 473-482 (1995).