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The estimation of paracetamol and orphenadrine citrate in a multicomponent pharmaceutical dosage form by spec-
trophotometric method has been reported. Because of highly interference in the spectra and the presence of non-linearity
caused by the analyte concentrations which deviate from Beer and Lambert's law, partial least-squares (PLS) and artiˆ-
cial neural networks (ANN) techniques were used for the calibration. A validation set of spiked samples was employed
for testing the accuracy and precision of the methods. Reasonably good recoveries were obtained with PLS for
paracetamol and the use of an ANN allowed the estimation of orphenadrine citrate, a minor component which could not
be adequately modeled by PLS. Three production batches of a commercial sample were analysed, and there was statisti-
cally no signiˆcant diŠerence (P＜0.05) between the results with the proposed method and those obtain with the o‹cial
comparative method.
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INTRODUCTION

One of the determination techniques most fre-
quently used in pharmaceutical analysis is UV-VIS
spectrophotometry because of the robustness, ease of
operation, rapid response as well as low purchase and
maintenance costs. However, the lack of speciˆcity of
the UV-absorption of components in a multicompo-
nent drug formulation usually hinders the application
of this technique, due to spectral overlap. More re-
cently, a group of methods known as `multivariate
calibration' such as multiple linear regression
(MLR), principal component regression (PCR) and
partial least-squares (PLS) have been found to play
important roles in analytical chemistry and they are
capable of analysing and modeling hundreds of ex-
perimental data, making it possible to determine mul-
tiple components of interest simultaneously. Among
them, PLS has found important applications in phar-
maceutical analysis.1) This method is useful for the
resolution of complex mixtures of analytes and the
spectra of which are strongly overlapping.2) Although
PLS assumes a linear relationship between the meas-
ured sample concentrations and the intensity of its ab-
sorption bands, small deviations from linearity are

acceptable as they can readily be suppressed by in-
cluding additional modeling factors.3) However, in
the presence of substantial non-linearity, PLS tends
to give large prediction errors and calls for more
robust models such as artiˆcial neural networks
(ANN).4)

Artiˆcial neural networks are computer methods
that simulate learning and generalization behavior of
the human brain through data modeling and pattern
recognition for complicated multidimensional
problems. A signiˆcant diŠerence between an ANN
model and a statistical model is that the ANN can
generalize the relationship between independent and
dependent variables without a speciˆc mathematical
function. Thus, an ANN works well for solving non-
linear problems of multivariate and multi-response
systems. The ANN has been used in a variety of dis-
ciplines, such as chemistry and chemical engineering.
For example, the ANN technique has been applied to
several analytical methods, such as nuclear magnetic
resonance,5) high-performance liquid chromatogra-
phy,6) infrared spectroscopy,7) mass spectroscopy,8)

and UV-VIS spectroscopy.9) It has also proved useful
for resolving mixtures of analytes giving deviate sig-
nal form Beer and Lambert's Law in spectrophoto-
metric techniques.10)

Paracetamol (4-acetamidophenol) is an eŠective
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Table 1. Composition of the Calibration Set for PLS

No. PAR
(mg L－1)

OPC
(mg L－1) No. PAR

(mg L－1)
OPC

(mg L－1)

1 30 2 12 20 2

2 10 2 13 10 0

3 20 1 14 15 0
4 20 3 15 20 0

5 25 1.5 16 25 0

6 25 2.5 17 30 0

7 15 1.5 18 0 1
8 15 2.5 19 0 1.5

9 20 2 20 0 2

10 20 2 21 0 2.5

11 20 2 22 0 3
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analgesic and antipyretic for treatment of minor,
non-in‰ammatory conditions in patients who are
prone to gastric symptoms.11) Orphenadrine citrate
((RS)-(dimethyl-2-(2-methylbenz-hydroxy) ethyl)
amine citrate) is employed as skeletal muscle
relaxant.12) Thus, tablets containing paracetamol
(PAR) and orphenadrine citrae (OPC) show com-
bined analgesic, antipyretic and skeletal muscle relax-
ing actions. This combination is widely used in
Thailand. Even though there are many reports of the
quantitative determination of paracetamol and or-
phenadrine citrate separately1316) or in combination
with other drugs,1719) no spectrophotometric method
has been reported for the simultaneous determination
of these two compounds in pharmaceutical tablets.

In this report, we study the possibility of the esti-
mation of paracetamol and orphenadrine citrate in
pharmaceutical dosage form, which has highly diŠer-
ence in proportions of two active ingredients by PLS
and ANN. Each tablet contains paracetamol 500 mg
and orphenadrine citrate 35 mg (in the ratio about
14 : 1 (PAR : OPC)). When both active constituents
are to be simultaneously estimated with a single spec-
trum measurement, the major analyte (PAR) would
be present in concentrations which deviate from Beer
and Lambert's law and the minor analyte (OPC)
would be in concentration near to the noise level. In
our study, PAR can be estimated with PLS method.
On the other hand, OPC requires the use of an ANN
since it is apparent non-linearity that cannot be ade-
quately modeled by PLS.

MATERIALS AND METHODS

Apparatus and Software Electronic absorption
measurements were carried out on a Shimadzu
UV160A spectrophotometer connected to a computer
loaded with Shimadzu UVPC software, using quarts
cells with a 1-cm path length. The absorption spectra
of all test and reference solutions were recorded each
1 nm in the range 200300 nm. The obtained data
were processed by a Pentium IV computer having 512
MB for RAM (Windows XP operating system). The
PLS was performed by PLS_Toolbox 2.020) under
MATLAB 7.021) and the ANN was implemented in
MATLAB 7.0 using the additional Neural Network
Toolbox.21)

Chromatographic measurements were carried out
in a high-performance liquid chromatography Shimu-
dzu LC-20AT, equipped with single pump, a 243-nm

detector, manual injector (20 ml) and a 4.6-mm×

25-cm column that contains packing ODS (C-18).
The mobile phase was 75％ of water and 25％ of
methanol.

Reagents All experiments were performed with
pharmaceutical-grade PAR and OPC and analytical-
grade reagents. Tablets containing PAR and OPC
were kindly supplied by manufacturer (SEA
PHARM Co., Ltd., Thailand). The preparations
contain 500 mg of PAR, 35 mg of OPC and ex-
cipients (EXP) such as lactose, corn starch, magnesi-
um stearate, microcrystalline cellulose and sodium
starch glycolate. Stock solutions of PAR (150 and
170 mg L－1), OPC (12.5 and 25 mg L－1) and EXP
(50 mg L－1) were prepared by dissolving accurately
weighed amounts of the drugs in methanol-water
(1:3, v/v).

Calibration Set Artiˆcial, a training set of 22
samples corresponding to central composite design
with three centre samples and 10 pure samples was
built to be used as calibration set for PLS. The com-
positions of the mixtures used in the calibration set
were summarized in Table 1. For the application of
ANN, there are constraints concerning the number of
samples, which at times may be limiting the develop-
ment of an ANN model. The number of adjustable
parameters (synaptic weights) is such that the
calibration set is rapidly overˆtted if too few training
pairs are available leading to loss of generalization
ability. Therefore, calibration set of 77 samples cor-
responding to central composite design with three
centre samples and mixture design of PAR and OPC
in a matrix of excipients was used. A representative
distribution of the concentration of PAR and OPC
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Fig. 1. Distributed Concentration of Synthetic Mixture De-
sign for Testing the Neural Networks

Table 2. Composition of the Spiked Samples

No. PAR
(mg L－1)

OPC
(mg L－1)

EXP
(mg L－1) No. PAR

(mg L－1)
OPC

(mg L－1)
EXP

(mg L－1)

1 10.70 1.86 4.51 6 26.51 1.30 4.77

2 16.05 1.86 4.51 7 26.51 1.94 4.77

3 21.40 1.86 4.51 8 26.51 2.59 4.77
4 26.75 1.86 4.51 9 26.51 3.23 4.77

5 32.10 1.86 4.51 10 26.51 3.88 4.77

Fig. 2. Spectra of PAR and OPC (both at 12 mg L－1) in
Methanol/Water (1:3, v/v) Solution

1725No. 10

across the range is shown in Fig. 1. This set was com-
posed of 4 groups. Each group was prepared on
diŠerent days in order to take into account the maxi-
mum possible variability on the data. The set of 77
samples was randomly divided into a training set (65
samples) and a monitoring set (12 samples). All sam-
ples were obtained by serial dilution of the stock solu-
tions in 25-ml volumetric ‰asks with methanol-water
(1:3, v/v). The concentrations of PAR were varied
from 0 to 35 mg L－1 and the concentrations of OPC
were varied from 0 to 5 mg L－1.

Spiked Sample Preparations One set of ˆve
synthetic samples on each compound (no.15 for
PAR, no.610 for OPC) were prepared, using spike
placebo technique, to validate the PLS model and
ANN model. In Table 2 the compositions of these
synthetic mixtures have been summarized.

Commercial Sample Preparation Three pro-
duction batches of a commercial pharmaceutical for-
mulation were evaluated. In this case, groups of 20
tablets were weighed, ˆnely powdered and mixed.

Portions of the powder equivalent to about 170 mg of
PAR and 12 mg of OPC were accurately weighed and
transferred to 250 ml volumetric ‰asks using 150 ml
of methanol-water (1:3, v/v). After being continu-
ously shaken for 20 min, the ‰asks were made up to
volume with the same solvent, and the solids were
ˆltered, then, 5 ml aliquots were transferred from
each ‰ask to 100 ml volumetric ‰asks and completed
to volume with the same solvent. Each batch was
analysed in three replicate.

RESULTS AND DISCUSSION

Spectral Features The highly interference of
the individual spectra of two drugs at equal concen-
trations (12 mg L－1) are shown in Fig. 2. The spectra
at the same solvent, but with analyte concentrations
corresponding to sample diluted 1/15000: PAR, 33
mg L－1, and OPC, 2.3 mg L－1are shown in Fig. 3. As
can be seen in Fig. 3, the minor analyte's concentra-
tion (OPC) is near to the noise level (absorbance is
under 0.05), while that for the major analyte (PAR)
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Fig. 3. Spectra in Concentrations Obtained when the Sample
was Diluted 1/15000: PAR, 33 mg L－1 and OPC, 2.3 mg L－1
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is near to a concentration level, which deviates from
Beer and Lambert's law (absorbance's rang between
2 and 2.5). Therefore, in order to simultaneously esti-
mate both constituents, it may introduce to deviations
of the absorbance/concentration linearity for the
major and the minor analytes.

PLS Modeling In the case of PLS, the absorp-
tion spectra for the calibration samples were recorded
in the wavelength range of 200300 nm and then sub-
jected to PLS analysis. Although PLS is usually con-
sidered as a full spectrum method, literature shows a
growing tendency to perform variable selection be-
fore multivariate regression, in order to improve its
predicting ability. Many diŠerent procedures have
been published for wavelength selection.22) In this
study, we have employed a moving window strategy
to the calibration set in order to ˆnd the location of
the minimum calibration variance23). Even though the
technique is very necessary, it should not be blindly
applied. It should be checking the overlapping of the
spectroscopic signal of the analytes at hand after
selecting an appropriate spectral region. In our case,
the selected regions were 211235 nm for PAR and
206220 nm for OPC because the absorbance in the
other ranges were reached a concentration level,
which deviates from Beer and Lambert's law (absor-
bances are over 2 or under 0.05). Once the optimum
spectral ranges were selected, a cross-validation
method using leave one out, was applied to select the
number of principal components (PCs). The cross-
validation procedure consists of systematically

removing one of the training samples in turn, and us-
ing only the remaining ones for construction of the la-
tent factors and regression. The predicted concentra-
tions were then compared with the actual ones for
each of calibration samples, and the root mean square
of error of cross-validation (RMSECV) was calculat-
ed. The RMSECV was computed in the same manner,
each time a new principal component was added to
the PLS model. The method described by Haaland
and Thomas24) was used for selecting the optimum
number of PCs. Three PCs and 7 PCs were found
suitable for PLS models of PAR and OPC, respec-
tively. The calibration PLS models were established
by PLS_Toolbox 2.0 program with these optimum
parameters. Table 3 and 4 show the result obtained
when applying each PLS model for PAR and OPC to
the spiked samples.

It can be seen from Table 3 and 4 that the statistical
parameters are good for PAR, but those are poor for
OPC due to severe interference occurring between
OPC and more concentrated PAR. Thus, ANN tech-
nique could be used for the estimation of OPC to
handle this intrinsically non-linearity.

ANN Modeling When the presence of non-
linearity was found and cannot be modeled by linear
model such as PLS, one can apply ANN. Although
ANN are also able to deal with a linear behavior and
can often improve the results in comparison with a
linear model, they are calibration techniques especial-
ly constructed to model non-linear information. In
this application, the set of 77 samples was used as
calibration set for ANN. This set was randomly divid-
ed into a training set (65 samples) and a monitoring
set (12 samples). The calibration ANN model was es-
tablished by MATLAB Neural Network Toolbox 2.0
program. This ANN model consisted of three layers
of neurons or nodes, which were the basic computing
units: the input layer with a number of active neurons
corresponding to the scores, one hidden layer with a
number of active neurons, and the output layer with
one active neuron corresponding to the scaled concen-
tration of the component of interest. The neurons
were fully connected in a hierarchical manner, i.e. the
outputs of one layer of nodes were used as inputs for
the next layer and so on. The nodes in the input layer
transfer the input data to all nodes in hidden layer.
These nodes calculate a weighted sum of the inputs
that is subsequently subjected to a non-linear trans-
formation:
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Table 3. Results Obtained for the Analysis of PAR when Ap-
plying PLS Model to the Spiked Samples

Spiked sample Actual
(mg L－1)

Found
(mg L－1)

Recovery
(％)

1 10.70 10.83 101.21

2 16.05 15.98 99.56
3 21.40 21.46 100.28

4 26.75 26.47 98.95

5 32.10 31.90 99.38

Mean recovery 99.88
r2 0.9998

Table 4. Results Obtained for the Analysis of OPC when Ap-
plying PLS Model to the Spiked Samples

Spiked sample Actual
(mg L－1)

Found
(mg L－1)

Recovery
(％)

6 1.30 1.58 121.54

7 1.94 2.72 140.21

8 2.59 2.91 112.36
9 3.23 3.65 113.00

10 3.88 3.02 77.84

Mean recovery 112.99

r2 0.6387

Fig. 4. Evolution of Training and Test Errors versus the
Number of Epochs for OPC at Learning Rate 0.4 and
Momentum 0.7
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oj＝f [
I

∑
i＝1
(siwij＋wbj)] (1)

where si is the input to node i in the input layer, I is
the number of nodes in the input layer, wij (weights)
are the connections between each node i in the input
layer and each node j in hidden layer, wbj is the bias to
node j and oj is the output of node j in hidden layer,
and f is a non-linear function. In this work we have
used the tan-sigmoid function (Eq. (2)) to increase
the convergence speed.25)

f (x)＝
ex－e－x

ex＋e－x
(2)

The tan-sigmoid hidden layer is critical as it allows
the network to learn non-linear relationships between
inputs and outputs. Linear functions are used in both
the input and output layers. The learning process was
carried out through the back-propagation algorithm.
The back-propagation network learns by calculating
an error between desired and actual output and
propagating this error information back to each node
in the network. This back-propagation error is used
to drive the learning at each node. The process of
changing the weight of the connections to achieve
some desired result is called learning or adaptation.

In the present work the number of neurons in the
hidden layer, momentum and learning rate were op-
timized. At this point, the mean square error (MSE)
was calculated, each time a new node was added to
the hidden layer at arbitrary learning rate, momen-
tum and the number of iterations. The number of
neurons at the hidden layer, which has the minimum
MSE value, was selected as the optimum number. Af-
ter this step, the learning rate was varies from 0.1 to
0.9, and for each learning rate the momentum was ex-
amined from 0.1 to 0.9. A total of 81 networks were
designed in this way. Each network was trained with
training set, but it was subsequently stopped before it
learns idiosyncrasies present in the training data by
searching the minimum MSE for the test set
(monitoring set). Finally, the number of the neurons
at the hidden layer with the use of optimized momen-
tum and learning rate was determined. Figure 4 shows
the stopping point, which was obtained at 25000
epochs for best ANN found for OPC. The summary
speciˆcations for the network created for the calibra-
tions were listed in Table 5.

For accuracy studies, by recovery, ˆve spiked sam-
ples were analysed. The recovery values of OPC, ob-
tained using ANN calibration model are shown in Ta-
ble 6. They illustrate the reasonable good recovery
values in most of the samples analysed.

Analysis of Tablet Dosage Form Once upon
optimized PLS model for PAR and ANN model for
OPC, a commercial sample was analysed in according
with the foregoing procedures. The intermediate pre-
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Table 5. Artiˆcial Neural Network Speciˆcations and Param-
eters

Parameter OPC

Wavelength range 211300

Input nodes 4

Hidden nodes 4

Output nodes 1

Learning rate 0.4
Momentum 0.7

Hidden layer transfer function Tan-sigmoid

Output layer transfer function Linear

Optimum number of iterations 25000

Table 6. Results Obtained for the Analysis of OPC when Ap-
plying ANN Model to the Spiked Samples

Spiked sample Actual
(mg L－1)

Found
(mg L－1)

Recovery
(％)

6 1.30 1.38 106.63
7 1.94 1.96 100.72
8 2.59 2.57 99.51
9 3.23 3.19 98.82

10 3.88 3.89 100.36
Mean recovery 101.21
r2 0.9988

Table 7. Precision for Concentrations on DiŠerence Days (n
＝6 Determinations on Each Day)

Day
PAR (PLS method) OPC (ANN method)

Mean SD RSD Mean SD RSD

1 99.02 1.108 1.119 100.98 2.695 2.668

2 99.33 0.849 0.855 101.88 2.082 2.044

3 98.71 1.769 1.792 99.83 2.894 2.898

4 99.59 1.762 1.769 98.51 2.016 2.047
5 99.38 1.737 1.748 101.12 3.382 3.345

6 99.23 1.446 1.457 98.87 2.205 2.230

Mean 99.21 100.20

SD 0.306 1.345
RSD 0.309 1.342

Table 8. Statistical Analysis of the Results Obtained by the
Proposed Method and the O‹cial Method for the Analysis
of Both Active Ingredients in Commercial Sample

Item

PAR OPC

PLS
method

O‹cial
method

ANN
method

O‹cial
method

Batch A 99.21 99.34 101.04 99.77

Batch B 99.46 98.25 101.24 99.54

Batch C 101.68 102.24 102.34 101.99
Calculated t 0.325 2.779

Critical ta 4.303 4.303

a Tabulated t-values (p＝0.05, df＝2)
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cision of the proposed methods was evaluated over six
consecutive days by performing six absoption spec-
trophotometric records each day and was expressed as
the standard deviation (SD) and relative standard
deviation (RSD). In Table 7, the results illustrate
that the repeatability for both active ingredients on
each day is satisfactory.

The proposed methods were applied to the determi-
nation of PAR and OPC in pharmaceutical tablets
for three production batches (batches A, B and C).
The average content of PAR was between 99.21 and
101.68 percent of the labeled amount (％LA) and the
average content of OPC was between 101.04 and
102.34％LA. The United States pharmacopeia 26th

ed. (USP 26), the content limits for PAR and OPC
are between 90.0 and 110.0％LA and between 93.0
and 107.0％LA, respectively. The obtained results of
these drugs gave rise to acceptable percentage of the
labeled amount.

Statistical analysis of the results obtained by the
suggested spectrophotometric procedures has been
also carried out. Table 8 shows the results of paired t-
test for a comparison of the proposed procedures

with the o‹cial procedures. The o‹cial methods for
PAR and OPC were followed to USP 26 methods13).
The calculated t-values are less than their correspond-
ing tabulated ones, indicating no signiˆcant diŠer-
ences between the suggested procedures and the refer-
ence procedures. The suggested procedures surpass
the comparing ones so they can be used to determine
PAR and OPC in pharmaceutical tablets.

CONCLUSIONS

This work illustrated the potential of the estimation
of two drugs in tablet preparations, which have highly
interference of the spectra and have the presence of
non-linearity cause by the analyte concentrations,
which deviate from Beer and Lambert's law. A vali-
dation set of spiked samples and a commercial sample
were employed for testing the accuracy and precision
of the methods. Reasonably good recoveries were ob-
tained with PLS for PAR and the use of an ANN al-
lowed the estimation of OPC, a minor component,
which could not be adequately modeled by PLS. In
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ANN, too many samples were used to train the net-
work. This makes it expensive in time and resources
to develop for use in routine work. Thus, PLS
method should be expected to give the best of choice
in data set where linear response is observed.
However, when non-linear response is present, artiˆ-
cial neural networks may be capable of giving su-
perior performance for spectrophotometric calibra-
tion. Due to the rapid calculation of the predictive
results of very large samples, ANN approach is an
eŠective choice for developing new analytical
methods for in-process control in pharmaceutical
manufacturing, which concern with several evaluated
samples.
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